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Foreword 

Technological progress has nowhere been more rapid than in the fields of 
electronics, electrical, and control engineering. The Macmillan Basis Books in 
Electronics Series of books have been written by authors who are specialists in 
these fields, and whose work enables them to bring technological developments 
sharply into focus. 

Each book in the series deals with a single subject so that undergraduates, 
technicians, and mechanics alike will find information within the scope of their 
courses. The books have been carefully written and edited to allow each to be used 
for self-study; this feature makes them particularly attractive not only to readers 
approaching the subject for the first time, but also to mature readers wishing to 
update and revise their knowledge. 

Noel M. Morris 



Preface 

This book deals with the principles of electrical circuits and systems, and to enable 
the reader to improve his understanding of the subject, a large number of worked 
examples are included in the text. Consequently, those attending a wide range of 
courses at universities, polytechnics, and colleges of further education will benefit 
from the book. It will also be of service to mature engineers wishing to refresh their 
knowledge. The book also provides other readers who are not directly concerned 
with electrical engineering with the principles of the subject. 

The book begins with a chapter on the basis of electrical circuits, dealing with 
the fundamental concepts and units involved. There follow three chapters on 
important aspects of circuits, namely circuit theorems, electromagnetism, and 
electrostatics. After this, attention is directed to the solution of alternating current 
circuits - in four chapters the topics of alternating voltage and current, single-phase 
circuits, complex notation, and polyphase circuits are discussed. The transformer is 
the subject of a chapter in which it is considered variously as a power-transforming 
device, as an impedance level converting device, and as an element in a coupled 
circuit. The book concludes with a chapter on transient effects in electrical circuits. 

I would like to acknowledge the encouragement I have received from my wife 
during the preparation of this book, and the forbearance of my family. 

Meir Heath Noel M. Morris 



J The Electrical Circuit 

1.1 Conductors, Semiconductors, and Insulators 

Materials used in electrical and electronic engineering can be classified in many ways, 
one of which is their ability to conduct electricity. Broadly speaking, most 
materials can be described as being conductors, or semiconductors, or insulators. 
Conductors are materials which readily allow current flow to occur when an e.m.f. 
is applied, whereas the current flow in insulators is very small (ideally, it is zero). 
Semiconductors are materials whose resistance to flow of current lies between that 
of conductors and that of insulators. A constant or parameter often used to 
describe the ability of a material to resist the flow of current is its resistivity (see 
section 1.10 for a full discussion). Using resistivity as a means of defining the above 
categories of material, conductors have a resistivity in the range from zero to 
10-4 D.m, semiconductors have a resistivity in the range 10-4 to 103 D.m, while 
the resistivity of insulators is above 103 D.m. 

The ability of materials to conduct current depends on their chemical structure. 
In the following section we shall discuss the relevant features of the atomic 
structure of materials used in electrical and electronic engineering. 

1.2 Structure of the Atom 

Although it is physically impossible to 'see' an atom, we can use experimental 
techniques to measure the size, mass, and charge of the invisible particle. Our 
concept of the atom is continually evolving, but we know that its structure contains 
a nucleus, consisting of protons and neutrons, which is surrounded by orbiting 
electrons. The orbits are known as shells or energy levels. The mass and charge 
associated with electrons, protons, and neutrons are given in table 1.1. From the 
table we see that electrons and protons have equal but opposite charges, and that 
neutrons have no charge and are electrically neutral. On the other hand, the mass of 
the electron is much less than that of the proton, while the masses of protons and 
neutrons are equal. In addition to the basic atomic particles, atoms also contain a 
number of particles which are unstable in nature and quickly disappear. These 
unstable particles have no significance in electrical engineering. 
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Table 1.1 Basic atomic particles 

Particle Mass (kg) Charge (C) 

Electron 9.11 X 10-3 I -Q.16 x10- 18 

Proton 1.67 X 10-2 7 + 0.16 X 10-18 

Neutron 1.67 X 10-2 7 nil 

The nucleus 

The nucleus contains protons and neutrons, and has a net positive charge equal to 
that of the protons. There are no electrons in the nucleus. The atomic number of 
that atom is equal to the number of protons in the nucleus. 

Electrons 

The net electrical charge of an isolated atom is zero, and it follows that there are as 
many electrons in orbit around the nucleus as there are protons in the nucleus. 
Thus the copper atom, which has 29 protons in its nucleus has 29 electrons in orbit. 
Also, the electrons orbit in particular layers or shells around the nucleus and the 
higher the electronic energy level of the electron, the greater its radius of orbit. The 
shells have been designated letters by scientists, commencing with K for the 
innermost shell. Successive shells are called the L, M, N, 0, P, and Q shells. It has 
also been found that all shells except the K shell comprise a number of subshells, 
which allow the electrons to assume one of several types of orbit. For example, 
electrons in one subshell may follow a circular orbit, and those in another subshell 
may follow an elliptical orbit. These variations allow the magnetic properties of 
some substances to be explained. 

The valence shell 

In an isolated atom, the valence energy shell is the highest energy level at which 
electrons are found at absolute zero temperature. As the temperature of the atom 
rises, the valence electrons (the electrons in the valence shell) become more 
'energetic' and the additional energy causes some of them to transfer to a higher 
energy level. To do so, the electrons must 'leap' across the energy gap between the 
valence shell and the next higher available shell, which is known as the conduction 
shell. Electrons which manage to transfer across the gap, known as the forbidden 
energy gap, can then take part in electrical conduction. 

A simple analogy of energy levels in an atom is presented in the form of a pan of 
water that is being heated. The drops of water on the upper surface level 
correspond to the electrons in the valence shell. As the pan is heated some of the 
drops of water on the upper surface acquire sufficient energy to escape to the 
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atmosphere, which is equivalent in the atom to electrons transferring to the 
conduction energy band. 

As isolated atoms are brought closer together to form a solid, the particles 
condense from the gaseous state to the solid state, when the energy shells spread to 
form energy bands, the bands being separated once more by forbidden energy gaps. 
Thus, in a solid the valence electrons reside in a valence energy band, the next 
available band above it being the conduction band. Bringing the atoms even closer 
together causes the valence and conduction bands to touch or even overlap. 

1.3 Classification of Solids 

Materials used in electrical and electronic engineering can be classified according to 
the energy-band theory outlined in section 1.2. That is, the materials have either 

(1) a full valence band which is separated from the conduction band by an 
energy gap, or 

(2) a full or partially full valence band which overlaps the conduction band. 

Insulators and semiconductors are contained in the first group, while the latter 
group contains electrical conductors. The feature that distinguishes insulators from 
semiconductors is the size of the energy gap between the valence and conduction 
bands. In insulators the gap is large so that very few electrons manage to traverse it 
at room temperature, whereas in semiconductors the gap is much smaller. 

1.4 Thermal Effects on the Electrical Resistance of Insulators and Semiconductors 

The electrical resistance to current flow in solids varies with temperature, and the 
reason for the way in which the resistance changes is suggested by the energy-band 
theory of solids. 

As we have seen, when the temperature of materials with an energy gap between 
the valence and conduction bands is increased, more electrons can transfer into the 
conduction band. This causes the electrical resistance of these materials to decrease 
with increase in temperature. 

1.5 Basic Electrical Quantities 

In this chapter we are concerned with the flow of direct cu"ent (d.c.) in electrical 
circuits. The following are terms and units used in association with these circuits. 

Electrical cu"ent 

Symbol /. The ampere (A) is that current which, when flowing in each of two 
infinitely long parallel conductors of negligible cross-section, and placed 1 m apart in a 
vacuum, produces between the conductors a force of 2 x 10-7 N per metre length. 
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Electrical quantity 

Symbol Q. The coulomb (C) is the quantity of electricity passing a point in a circuit 
when a current of I ampere flows for I second, and 

Q =It coulombs 

Electrical potential 

Symbol E. The unit of electric potential is the volt (V), and is the potential 
difference that exists between two points on an electrical conductor which carries a 
current of I ampere, the electrical resistance between the two points being I ohm. 

E =IR volts (1.1) 

The relationship given in equation l.I is known as Ohm's law. 

Electrical resistance 

Symbol R. The unit of electrical resistance is the ohm (Q) and, when a current of 
I A flows through a conductor of resistance I Q, it causes the p.d. between the ends 
of the conductor to be I V. 

Electrical energy 

Symbol W. The joule (J) is the energy dissipated in a circuit when a p.d. of I V 
causes a current of I A to flow for I second. 

W =Eft joules or watt seconds 

Since a 100 W lamp consumes in one hour a total of IOO x 60 x 60 = 360 000 J, we 
see that the joule is not a practical unit of energy. The commercial unit of electrical 
energy is the kilowatt hour (1000 watt hour), which is 

1 kWh= 1000 x 60 x 60 J = 3 600 000 J or 3.6 MJ 

The kWh is often called a unit of electrical energy, and 

Electrical power 

kWh= joules 
3.6x 106 

Symbol P. Power is the rate of doing work, and the unit is the watt (W) or 
joule/ second. 

p =Eft joules EI 
t seconds 

watts 
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1.6 Relationships in an Electrical Circuit 

The following relationships were stated in section 1.5. 

E=IR V 

Q=It C 

P=EI W 

W=Eit J 

5 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

Using the above, several other important relationships can be deduced. For 
example, if we substitute equation 1.2 into equation 1.4 we have 

P=EI= (IR)I=/ 2R W (1.6) 

Also, substituting/= E/R from equation 1.2 into equation 1.4 gives 

E E2 
P=EI=E X-=- w (1.7) 

R R 

Substituting equations 1.6 and 1.7 into equation 1.5 gives 

W=I 2Rt J 

E 2t 
= 

R 
J 

Example 1.1 

(1.8) 

(1.9) 

An electrical circuit has a resistance of 200 n and is energised by a 250 V supply. 
Calculate the current drawn from the supply. 

Solution 

Example 1.2 

E 250 
/=-=-= 125 A 

R 200 . 

Calculate the power dissipated by the circuit in example 1.1. 

Solution 

p = EI = 250 X 1.25 = 312.5 w 

Note This can also be calculated from either of equations 1.6 and 1.7. 
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Example 1.3 

Determine the electrical energy consumed in 1 hour by the circuitin example 1.1. 

Solution 

W=Eit= 250 X 1.25 X 60 X 60 = 1125 000 J 

1 125 000 
= 3.6 X 106 kWh= 0.3125 kWh 

Note This can also be calculated from either of equations 1.8 and 1.9. 

Example 1.4 

Calculate the quantity of electricity consumed by the circuit in example 1.1 in a 
period of 60 seconds. 

Solution 

Q =It= 1.25 X 60 = 75 c 

1.7 Multiples and Sub-multiples of Electrical Quantities 

Many of the basic units used in electrical circuits are, in some applications, either 
too large or too small for use with practical circuits. For example, the basic unit of 
power (the watt) is too small to describe the power output from an electrical 
generator; we rate these devices either in terms of the number of kilowatts ( 1000s 
of watts) or of the number of megawatts (1 000 OOOs of watts) generated. The 
power dissipated by transistors is very small and, in this case, the watt is an 
inconveniently large unit. Here we use the milliwatt (10-3 W) as the basic unit of 
power. The multiples and sub-multiples used in connection with electrical circuits 
are listed in table 1.2. 

Example 1.5 

The insulation resistance of a cable is 10 Mil. Calculate the leakage current which 
flows through the cable insulation when the supply voltage is 200 V. 

Solution 

I_ ~ _ 200 _ _6 _ 
- R- 10 X 106 -20 X 10 A- 20 t.tA 
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Table 1.2 

Symbol Prefix Multiple 

T tera 1012 
G gig a 109 

M mega 106 

k kilo 103 

c centi 10-2 

m milli 10-3 

fJ. micro 10-6 

n nano 10-9 

p pi co 10-12 

f femto 10-1 s 

a atto 10-1s 

Example 1.6 

Calculate the power dissipated in the insulation in example 1.5. 

Solution 

Example 1. 7 

p = EI = 200 X 20 X 10 -6 = 4000 X 10-6 w = 4000 fJ.W 

=4mW 

7 

Calculate the energy consumed in the insulation in example 1.6 if the supply is 
maintained for 60 seconds. 

Solution 

W =Eft= 200 X 20 X 10-6 X 60 

= 0.24 J = 240 mJ 

1.8 Resistance Colour-coding and Preferred Values 

The values of resistors used in many electronic circuits are colour-coded according 
to an international notation which is given in table 1.3; the coding method for 
resistors with axial leads is shown in figure 1.1. 
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Table 1.3 

Decimal 
Colour Significant figure multiplier 

no band 
silver 0.01 
gold 0.1 
black 0 1 
brown 10 
red 2 102 

orange 3 103 

yellow 4 104 
green 5 105 
blue 6 106 

violet 7 107 

grey 8 108 
white 9 109 

1st significant 
figure 

2nd significant 
figure 

decimal multiplier tolerance 

Figure 1.1 Resistor colour code 

Tolerance 
(per cent) 

20 
10 
5 

Thus a resistor that is colour-coded yellow, violet, orange, silver is a 47 kD 
resistor that has a tolerance of 10 per cent. That is, its value lies in the range 
47 kD ± 10 per cent, or 42.3 kD to 51.7 kD. The nominal values of resistance that 
are commercially available are selected so that the value of a resistance at the upper 
limit of its tolerance band is approximately equal to the value of the next higher 
resistance at the lower limit of its tolerance. A list of these nominal values or 
preferred values, together with their tolerances are given in table 1.4. The values in 
use are decimal multiples and sub-multiples of those listed. 

1.9 Conductance 

Conductance, symbol G, is the reciprocal of resistance and 
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Table 1.4 

Percentage tolerance 
20 per cent 10 per cent 5 per cent 

10 10 10 
11 

12 12 
13 

15 15 15 
16 

18 18 
20 

22 22 22 
24 

27 27 
30 

33 33 33 
36 

39 39 
43 

47 47 47 
51 

56 56 
62 

68 68 68 
75 

82 82 
91 

and has the unit of the siemen {S). Thus, a resistance of 10 n has a conductance of 
0.1 S. Substituting the above relationship into Ohm's law we get 

or 

I 
E=IR=- V 

G 

I=EG A 

1.10 Resistivity and Conductivity 

{1.10) 

The resistance of a conductor depends not only on the physical dimensions of the 
conductor, but also on a parameter known as its resistivity. Experiments on a 
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uniform sample of conducting material show that the resistance is directly 
proportional to its length, /, in the direction of flow of current, and inversely 
proportional to the area, a, through which the current flows. The resistivity, symbol 
p, relates the resistance of the sample to I and a, as shown below. 

I 
R=p­

a 
(1.11) 

In the SI system of units, I has the dimensions of metres, a has the dimensions of 
(metres)2 , R is in ohms, and p has the dimensions of ohm metres (!1m). 

Typical values of resistivity are, for copper and aluminium at 20°C, 
1.73 x 10-8 n m (that is, 1.73 x 10-2 p.!1 m or 17.3 p.!1 mm) and 2.83 x 10-8 n m, 
respectively. 

Conductivity 

Symbol a, is the reciprocal of resistivity, as follows. 

hence 

or 

Example 1.8 

1 
a=- (!1m)- 1 

p 

I R=- n 
a a 

a 
G= a- S 

I 

(1.12) 

(1.13) 

(1.14) 

Determine the resistance of 100m of copper wire of area 0.05 cm2 , the resistivity 
of the COpper being 1.73 X 10-8 [2 m. 

Solution 

Area= 0.05 x (10-2 ) 2 = 0.05 x 10-4 m2 

l 100 R = p- = 1.73 X 10-8 X----
a 0.05 x 10-4 

= 0.346 n 
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1.11 Temperature Coefficient of Resistance 

The resistance of the majority of materials used in electrical engineering alters with 
change in temperature. In conductors this change is an increase in resistance for an 
increase in temperature, and in insulators and semiconductors it is a decrease in 
resistance for an increase in temperature (see section 1.4). Certain alloys such as 
constantan, eureka, and manganin show very little change in resistance over their 
working range. The latter group of materials are used in the construction of 
precision resistors and instrument shunts. 

Over the operating temperature range of the majority of electrical apparatus, the 
resistance of electrical conductors varies linearly with temperature, as shown in 
figure 1.2. The resistance of the conductor at 0°C is R0 , at some temperature 8 1 it 
is R 1 , and at 8 2 it is R 2 • From the figure we see that the slope of the graph is 
(R 2 -R 1 )/(8 2 - 8t), and is the increase in resistance per unit temperature rise. 
The increase in resistance expressed as a fraction of the resistance at temperature 8 1 

is called the temperature coefficient of resistance referred to 8 1 , and has the 
symbol a 1 where 

The temperature coefficient a2 ' referred to 8 2 is 

R2 -R1 
a2 = 

(82- 8t)R2 

In the case of metals, R 2 is always greater than R 1 , and we say that the 
temperature coefficient of resistance has a positive value. In insulators, electrolytes, 

0°C 
temperature 

Figure 1.2 Variation of resistance with temperature 
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and in many semiconductors, the value of R 2 is less than that of R 1 , so that the 
graph slopes from left to right and the temperature coefficient has a negative value. 
In figure 1.2, the temperature coefficient of resistance referred to 0° C is a 0 , where 

Rearranging this equation yields 

Similarly 

Hence 

R 1 1 + a0 8 1 

R 2 1 + a0 82 

(1.15) 

(1.16) 

(1.17) 

The value of a0 can be computed from a knowledge of the value of 8 3 , at which 
point the graph cuts the base line, when the resistance is zero. 

R 0 -0 
ao = 

(0- 83)Ro -83 

Measurements with annealed copper wire show that 8 3 = -234.5 °C, hence for 
copper 

1 
ao = ( ) = 0.004 262 (0 C) -I 

- -234.5 

Example 1.9 

The resistance of a coil at 20 °C was 20 n. What current would it draw from a 10 V 
supply when operating in a cold room at 0 °C, the temperature coefficient of 
resistance being 0.0043 per °C referred to 0 °C? 

Solution 

From equation 1.15 

hence 

Rt 20 
R 0 = = = 18.42 n 

1 + ao8 1 1 + (0.0043 X 20) 
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therefore 

Example 1.10 

E 10 
/ 0 =-=--= 0.543 A 

R 0 18.42 

13 

The field coil of an electric motor has a resistance of 250 n at 15 °C. By what 
amount, in n, will the resistance of the coil increase at the working temperature of 
45uC? Assume a 0 = 0.0043 per °C. 

Solution 

Using equation 1.17 

hence 

R 1 (1 + a0 02) 250[1 + (0.0043 x 45)] R2 = - --=---'--------'-" 
(1 + a0 0t) 1 + (0.0043 x 15) 

= 280.3 n 
Resistance increase = 280.3 - 250 = 30.3 n 

1.12 Circuit Notation for Voltages and Currents 

When writing down equations which define the operation of electrical circuits, it is 
convenient to use a notation that is easy to understand. A notation in common use 
is shown in figure 1.3, in which the current and voltages are indicated by arrows as 
follows. 

I 

- + 

E 

c~--i 

I 

8 
+ 

Figure 1.3 Electrical circuit voltage and current notations 



14 Electrical Circuits and Systems 

( 1) The direction of the current flowing in a branch or arm of a circuit is 
indicated by an arrow on the branch. 

(2) The potential difference between individual points or nodes in the circuit 
(A, B, and C are nodes in figure 1.3) is indicated by an arrow between the nodes 
which is off the circuit The arrowhead on the potential arrow points towards 
the node which is assumed to be the more positive node. 

An exception to the above notation occurs in one form of circuit analysis known as 
Maxwell's circulating-current method, discussed in chapter 2. 

In figure 1.3, current flows out of the positive plate of the cell and enters R 1 via 
node A, and leaves via node B. In this case there is no doubt that point A is positive 
with respect to point B, so that we show the potential arrow pointing from B to A. 
Similarly, the potential arrow associated with R 2 points from C towards B. In 
cases of this kind we use a double subscript notation to define potential drops and, 
in the case of the p.d. across R 1 , we say that the voltage across it is V AB, where 

Similarly 

V AB =the voltage at A relative to the voltage at B 

=(the voltage at A)- (the voltage at B) 

=VA- VB 

V BC = the voltage at B relative to the voltage at C 

=VB- Vc 

Since the cell is connected between nodes A and C and, quite clearly, A is positive 
with respect to C, then 

also 

In a simple circuit of the type in figure 1.3, we can quickly decide which of two 
points is the more positive. In complex networks it may not be so easy to decide 
correctly on the relative polarities of various points in the circuit. In such a case we 
must simply make assumptions about the relative polarities, and draw the potential 
arrows on the circuit accordingly. If we have chosen correctly, then the calculated 
potential between those points will appear as a positive value. If we have chosen 
incorrectly, then the answer will be negative. For example if, in a complex network, 
we find that voltage Vxy has a value of +4 V, then point X is positive with respect 
to point Y by 4 volts. On the other hand, if Vxy = -4 V, then X is negative with 
respect to Y by 4 volts. 
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1.13 Resistors in Series and in Parallel 

Circuit elements are said to be connected in series when each element carries the 
same current as the others. The three resistors in figure 1.4a are, by the above 
definition, in series with one another. The potential drop in R 1 is JR 1 , that in R 2 is 
IR 2, and that in R 3 is JR 3. From the work in section 1.12, we see that the sum of 
the potential drops in the three resistors is equal toE, hence 

E=IR1 +IR2 +JR3 =I(R1 + R2 +R3)=IRs 

where Rs is the equivalent resistance of the three resistors in series. Thus the circuit 
in figure 1.4b is electrically equivalent to figure 1.4a, in which 

Rs =R1 +R2 +R3 

In a circuit containing n resistors R 1, R 2 , ••• , Rn in series, the equivalent 
resistance of the circuit is 

R 5 =R 1 +R2 + ... +Rn 

The series connection results in an equivalent series resistance which is greater than 
the value of the highest individual value of resistance in the circuit. 

The equivalent conductance of a series circuit is evaluated as follows. The p.d. 
acrossR 1 isJ/G 1,whereG1 = 1/R1,thep.d.acrossR2 isl/G2 ,etc.,and 

E=I(-1 +-1 +-1 ) 
G1 G2 G3 

(o) 

I 

Rs 

(b) 

Figure 1.4 Resistors in series 
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Hence the equivalent conductance Gs of the series circuit is 

The special case of two conductances in series (see, for example, section 2.9) yields 
the result 

Circuit elements are said to be in parallel with one another when the same 
voltage appears across each of the elements. The circuit in figure l.Sa shows three 
resistors in parallel, and it is shown below that the circuit may be replaced by the 
electrically equivalent circuit in figure l.Sb. 

Since the sum of the currents flowing into the three parallel branches must be 
equal to the current flowing from the cell, then 

Now, if the equivalent resistance of the parallel circuit isRp, then!= V/Rp and 

or 

I 

1 1 1 1 
-=-+-+­
Rp R, R 2 R3 

I 

(a) (b) 

Figure 1.5 Resistors in parallel 
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The case of two resistors in parallel occurs in many circuits, and deserves special 
mention. Here the equivalent resistance of the circuit is 

or 

RIR2 Rp=---
Ri +Rz 

product of the two resistances 

sum of the two resistances 

In a circuit containing n resistors in parallel, the equivalent resistance is 

Alternatively, the equivalent conductance Gp of the parallel circuit is 

Example 1.11 

A circuit containing three series-connected resistances has an effective resistance of 
100 D.. If two of the resistors have values of 25 Q and 60 D., respectively, what is 
the value of the third resistor? 

Solution 

Rs =R 1 +R2 +R 3 

where Rs = 100 D., R 1 = 25 D., R 2 = 60 D., and the value of R 3 is unknown. 

R 3 = 100- (25 + 60) = 15 Q 

Example 1.12 

Four resistors are connected in series with one another, three having values of 5, 10, 
and 15 D., respectively. If the power dissipated by the circuit is 50 W when it is 
connected to a 50 V supply, what is the value of the unknown resistance? 
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Solution 

hence 

Now 

Therefore 

Example 1.13 

v2 
P=­

Rs 

V 2 so2 
R 8 =-=-=50il 

p 50 

Electrical Orcuits and Systems 

R 4 =50-(5+ 10+ 15)=20il 

A parallel circuit contains resistors of 5, 10, and 15 n. Calculate the equivalent 
resistance of the parallel combination. 

Solution 

Hence 

1 1 1 1 
- = - +- +- = 0.2 + 0.1 + 0.0667 = 0.3667 s 
Rp 5 10 15 

Rp = 1/0.3667 = 2.727 n 

Note When dealing with this type of problem, readers are advised to use tables of 
reciprocal values in order to evaluate the 1/R terms. 

1.14 Series-Parallel Circuits 

Series-parallel circuits contain a combination of series and parallel sections, one 
example being shown in figure 1.6a. In order to evaluate the equivalent electrical 
resistance of the complete network, the equivalent resistance of each section is first 
determined from which the total resistance is calculated. 

In figure 1.6b, Rp 1 is the parallel combination of R 1 , R 2 , and R 3 , while Rp 2 is 
the parallel combination of R 5 and R 6 • Resistors Rp I> R 4 , and Rp 2 are then 
combined to give an equivalent series resistance R. The latter value is taken in 
combination withR 7 to give the equivalent resistanceRE of the complete network, 
see figure 1.6c. 
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(a) 

R7 

--~----~~~---4~~----~~~--~---
(b) 

(c) 

Figure 1.6 A series-parallel circuit 

Example 1.14 

In a circuit of the type in figure 1.6a, R 1 = 10 D., R 2 = 20 D., R 3 = 20 .n, 
R 4 = 5 D., R 5 = 30 D., R 6 = 15 D., and R 7 = 20 D.. Determine the equivalent 
resistance RE of the complete circuit. 

Solution 

Adopting the procedure outlined above 

1111111 
- =-+- +-=-+-+- = 0.2 s 
Rp 1 R 1 R 2 R 3 10 20 20 

hence 

and 

therefore 

Rp 1 = 1/0.2 = 5 D. 

30 X 15 
-----= 10 [2 
30 + 15 

R = Rp 1 + R4 + Rp2 = 5 + 5 + 10 = 20 D. 
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The equivalent resistance of the complete circuit is 

R?R 20 X 20 
R =--= = 10£2 

E R 7 + R 20 + 20 

1.15 Division of Current in Parallel Circuits 

In many instances we need to calculate the magnitude of the current flowing in any 
one of the branches of a parallel circuit. Let us consider the circuit in figure 1.7. 
The current flowing into the parallel circuit is given by the expression 

I=E/Rp 

whereRp=R 1R 2 /(R 1 +R 2 ),andl1 =E/R 1 ,hence 

therefore 

It may also be shown that 

If we use the conductance of the paths in the parallel circuit, the following 
relationships are obtained 

and 

where G1 = 1/R 1 , and G2 = l/R 2 . 

In the general case where there are n parallel paths, we can show that the current 

I 

Figure 1.7 Division of current in a parallel circuit 
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flowing in the mth path is 

1 =Rp /= Gm I 
m Rm Gp 

where Rm and Gm are the resistance and conductance, respectively, of the mth 
path, and Rp and Gp are the equivalent resistance and conductance, respectively, of 
the parallel circuit. 

Example 1.15 

A parallel circuit containing two resistors of resistance 5 and 15 il, respectively, 
draws a current of 4 A from a power supply. Determine the current flowing in each 
resistor, the power consumed by each resistor, the total power consumed by the 
circuit, and the p.d. across the circuit. 

Solution 

LetR 1 = 5 il andR 2 = 15il. 

/1 = R21 = 15 X 4 = 3 A 
R1+R2 5+15 

- RII -~-lA /2- - -
R 1 +R2 5+15 

The power consumed in R 1 is 

PI =/1 2 Rl =3 2 X 5=45W 

and inR 2 is 

p2 =/2 2 R2 = 12 X 15= 15W 

The total power consumed by the circuit is the sum of the two values calculated 
above. 

P=P1 +P2 =45+ 15=60W 

The p.d. across the circuit is equal to the p.d. across either of the resistors. For R 1 

this is 

1.16 Mechanical Quantities 

In electrical engineering we need to use certain mechanical quantities, the units of 
these quantities being defined in terms of the units of length, mass, and time, 
namely the metre, the kilogram, and the second as follows. 
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Force 

Symbol F. The newton (N) is that force which gives a mass of 1 kg an acceleration 
of 1 m/s•. The relationship between these factors is 

F = mf newtons 

where m = mass, and f = acceleration. 

Energy, or Work 

Symbol W. The joule (J) is the work done when a force of 1 N acts through a 
distance of 1 m in the direction of the force, and 

W = Fd joules 

where d = distance. 

Thermal energy 

Symbol Q. The energy gained or lost by a mass of m kilograms of substance when 
its temperature is changed by l:i{J degrees kelvin (K) is 

Q = m X C X 08 joules 

where c is the specific heat capacity of the substance, whose dimensions are given as 
J /kg K or as kJ /kg K. Typical values of c are listed below. 

Substance 
Water 
Iron 
Aluminium 
Lead 

Torque 

Value of c (kJ/kg K) 
4.187 
0.4187 
0.385 
0.1256 

Symbol T, is the turning moment produced by a force about an axis or centre of 
rotation, and is the product of the force F which is at right angles to the radius of 
rotation R, where F is in newtons and R is in metres. 

T=FR Nm 

Velocity 

This is the rate at which a body or particle is moving. Linear velocity, symbol v, has 
dimensions of m/s, and angular velocity, w, has dimensions of rad/s. The two are 
related as follows 

v = wR m/s 

where R =radius of rotation. 
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Power 

Symbol P, is the rate of doing work, and the unit of power is the watt (W) which is 
the joule/second. 

Fd 
P=- W or J/s 

t 

== force x velocity = Fv 

The equation for rotational power produced by torque Tis deduced below. 

rotational power == force x velocity 

T 
=-xwR =wT W 

R 
2rrNT 

=--
60 

where N is the speed of revolution in revolutions per minute. 

Example 1.16 

The moving section of a linear motor has a mass of 2 kg, the frictional resistance to 
motion being negligible. If the field system causes the mass to accelerate at 
200 m/s2 , what mechanical force is applied to the moving system? 

Solution 

F == mf == 2 x 200 == 400 N 

Example 1.17 

An electrical water-heater contains 22 kg of water at 15 °C. If the efficiency of the 
heater is 80 per cent, calculate the energy consumed by the heating element in 
order to raise the water temperature to 100 °C (a) in joules, and (b) in kWh. The 
specific heat capacity of water is 4.187 kJ /kg K. 

Solution 

The heat output from the element is 

Q=mxcxMJ 

== 22 X 4.187 X (100- 15) == 7830 kJ 
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The equivalent heat input to the element is 

and the electrical input in kWh is 

7830 
-=9787kJ 
0.8 
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9787 X 1000 
3.6 X 106 = 2.72 kWh 

Example 1.18 

Determine the torque developed at the shaft of an electrical motor which provides 
an output power of 20 kW at a speed of 3000 revolutions per minute. 

Solution 

P=Tw 

hence 

T=Pjw Nm 

The shaft speed in rad/s is given by the relationship 

2rrN 2rr x 3000 
w =- = = 314.2 rad/s 

hence 

60 60 

20000 
T=--=63.65 Nm 

314.2 

Summary of essential formulae and data 

Electron: mass = 9.11 x 10 -3 1 kilograms 
charge= -0.16 X 10-18 COUlombs 

Proton: mass= 1.67 x 10-2 7 kilograms 
charge= 0.16 X 10-18 COUlombs 

Charge: Q =It coulombs 

Ohm's law: E = IR = I/G volts 

Energy: W =Eft= l 2Rt = E 2t/R joules or watt seconds 

Power: P=EI=l2R =E2/R watts 

Conductance: G = 1/R siemens 
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Resistance: R = plja = 1/(aa) ohms 

Temperature coefficient: 
R2 -R1 

al = 
(8 2 - 8J)R1 

Resistors in series: R = R 1 + R 2 + 0 0 0 ohms 

Resistors in parallel: l/R = 1/R 1 + l/R2 + 0 0 0 ohms 
G = G 1 + G2 + 0 0 0 siemens 

Division of current between R 1 and R 2 in parallel: 
current in R 1 =total current x R 2 /(R 1 + R 2 ) amperes 

Force: F = mf newtons 

Energy: W = Fd joules 

Thermal energy: Q = mcoe joules 

Torque: T = FR newton metres 

Power: P = Fd/t = wT watts 

25 



2 Circuit Theorems 

The circuit theorems outlined in this chapter are illustrated by applications to d.c. 
circuits, but the theorems themselves can also be applied to a.c. circuits. 

2.1 Kirchhoffs Laws 

First law: The total current flowing towards a junction or node in a circuit is equal 
to the total current flowing away from the node, that is, the algebraic sum of the 
currents flowing towards the node is zero. 

This law expressed mathematically is 

"i.I = 0 at each node 

where the symbol "i. means 'the algebraic sum of. In figure 2.la, the current 
flowing towards node N is (/1 + / 3 ), and that flowing away from it is (/2 + 14 ), 

hence 

or 

that is 

"i.I= 0 at node N 

Second law: In any closed circuit, the algebraic sum of the potential drops is equal 
to the algebraic sum of the e.m.f.s acting in that loop. 

This is expressed in mathematical form as 

"i.IR="i.E 

Alternatively, we may also say that the algebraic sum of all the e.m.f.s and p.d.s in 
the closed loop is zero. This statement is best understood by reference to 
figure 2.lb. This circuit contains two e.m.f.s and, in this case, we arbitrarily decide 
that E 1 is greater thanE 2 , so that the circuit current circulates around the loop in a 
clockwise direction. Having made this decision, we then draw a 'potential drop' 
arrow by the side of each resistor in the manner outlined in section 1.12. Starting at 
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(a) (b) 

Figure 2.1 Illustrating Kirchhoff's laws 

any point in the circuit, say point A, we proceed round the complete circuit writing 

down the values of the e.m.f.s and p.d.s. as we do so, giving each e.m.f. or p.d. a 
positive algebraic sign if the 'potential' arrow points in the direction in which we 
are moving round the circuit, and giving it a negative algebraic sign if the arrow 
points in the opposite direction. Suppose we elect to move round the loop via the 
sequence of nodes ABCDA (note we must always return to the starting node), then 
the loop equation is 

or 

(2.1) 

that is 

r.E = "'fJR 

Alternatively, if we proceed in the opposite direction, that is, in the direction 
ADCBA, the loop equation is 

IR 3 +E2 +IR 2 +IR 1 -£1 =0 

or 

(2.2) 

Since equations 2.1 and 2.2 are identical to one another, then we see that the 

direction in which we proceed around the network has no effect on the final 
equation. 

There are two basic methods of applying Kirchhoff's laws, namely the 

branch-current method and Maxwell's circulating-current method (a method first 
suggested by James Clerk Maxwell, the Scottish physicist). 
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The branch-current method 

In this method of analysis, a current is assigned to each branch of the network, 
after which Kirchhoff's laws are applied, as illustrated in the following examples. 

Example 2.1 

Calculate the current in each branch of the network shown in figure 2.2. 

I~ 
I 

A F E 

Figure 2.2 

Solution 

First, we assign currents I 1 , I 2 , and I 3 to the three branches joining at node C, 
noting that / 3 =/1 +/2 . Next, we assign a 'potential' arrow to each e.m.f. and 
resistor, the direction in which the arrow points indicating which end of the resistor 
has the more positive potential if the current flows in the direction we have 
selected. The circuit equations can now be formed. 

Loop ABCFA 

or 

5 = 25/1 + 20/2 (2.3) 

Loop ABCDEF A 

5 - 5/1 + 10/2 - 20 = 0 

or 

(2.4) 
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We solve between equations 2.3 and 2.4 for currents/1 and/2 • Multiplying equation 
2.4 by 2 and adding it to equation 2.3 yields 

or 

-25 = 35/1 

25 
/1 = --= -0.71 A 

35 

Substituting this value into equation 2.3 gives 

5 = [25 x(-0.71)] +20/2 

hence 

therefore 

/3 = /1 + 12 = (-0.71) + 1.14 = 0.43 A 

Since I 1 and I 3 have positive signs associated with them, it follows that these 
currents flow in the directions shown on the diagram. Current I 2 has a negative sign 
associated with it, so that it flows in the opposite direction to that chosen, that is, 
it flows from node C to node D. 

Example 2.2 

Determine the voltage V AB in figure 2.3. 

l1.a 

IOV 20V 

c 

Figure 2.3 

Solution 

The circuit has two meshes which are connected at a common point by the link 
C'C. No current flows between points A and B, but a potential exists between 
them. In order to determine the voltage V AB· we need to evaluate the p.d.s in the 
path connecting the points A and B. We assign currents I 1 and I 2 to the loops in the 
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manner shown, in which 

Now 

10 
/1 =--= 1 A 

8+2 

20 
/2 =--=0.5 A 

10 + 30 

VAB = Vc'B +Vee'+ VAc 

=-10/2 +0+2/1 

= -(10 X 0.5) + (2 X 1) = -3 V 

That is, the potential of point A with respect to point B is -3 V. Conversely, 
VBA = +3 V. 

Maxwell's circulating-current method 

In this method of circuit analysis a clockwise circulating-current is assigned to each 
mesh in the network, the network equations being obtained by the application of 
Kirchhoff's laws. Certain of the branches will then carry two fictitious currents that 
flow in opposite directions, as occurs in the 20 n resistor in figure 2.4. 

Example 2.3 

Calculate the current in each branch of the network in figure 2.4. 

5V 20V 

A F E 

Figure 2.4 

Solution 

The circuit is seen to be identical to that in example 2.1. First, we assign currents / 1 

and / 2 to the meshes, and note that both currents flow in the 20 n resistor, but in 
opposite directions to one another. The circuit equations are obtained by applying 
Kirchhoffs second law to each loop, restricting our path to the confines of the 
loop. 
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Loop ABCFA 

5-511-2011 +2012 =0 

or 

5 = 25 11 - 2012 

Loqp CDEFC 

-1012-20-2012 +2011 =0 

or 

-20 = 3012-2011 

Solving between equations 2.5 and 2.6 yields 

11 = -0.71 A 

12 =-1.14A 

That is, both 11 and 12 flow in an an ticlockwise direction in the actual circuit. 

2.2 Thevenin's Theorem 

31 

(2.5) 

(2.6) 

Any two-terminal electrical network (sometimes known as a one-port network) can 
be replaced by an equivalent network which comprises an ideal voltage source in 
series with a resistance. Thus the circuit appearing between terminals A and B in 
figure 2.5a can be replaced by the equivalent circuit in figure 2.5b. This is 
summarised by Thevenin's theorem as follows. 

r- ---------------~ 
I I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 

I 8 
L ______________ J 

(a) 

il~-~-~-~--1· 

'1 ], l ______________ j 

(b) 

Figure 2.5 Illustrating the principle of Tbevenin's theorem 
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An active network having two terminals A and B to which an electrical load may 
be connected, behaves as if the network contained a single source of e.m.f. E having 
an internal resistance R, where E is the p.d. measured between A and B with the 
load disconnected, and R is the resistance of the network between the points A and 
B when all the sources of e.m.f. within the network have been replaced by their 
internal resistances. 

Resistance R is sometimes described as the internal resistance or output 
resistance of the equivalent network. 

Example 2.4 

Determine the current I 1 flowing in the 20 n resistor in figure 2.6a. 

(a) 

Solution 

A 

I, 

10.0. 

20.0. 

liOV T 
B 

B 
(c) 

A 

-+--R 

Figure 2.6 

10.0.(0 10.0. 

115 v IOV! I 
(b) 

B 
(d) 

A 

E 

0 
B 

We first disconnect the 20 n resistor, as shown in figure 2.6b and calculate the 
voltage E appearing between terminals A and B. To do this, we assume that current 
I circulates between the two cells. Since the two e.m.f.s assist one another, then 
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(15 + 10)V 
I= (10 + 10)n = 1.25 A 

The p.d. between terminals A and B in figure 2.6b is 

E= 15- 10I= 15- 12.5 = 2.5 V 

That is, the Thevenin equivalent circuit voltage source E has a value of 2.5 V, with 
point A being positive with respect to point B. 

The value of R is determined by measuring the resistance between terminals A 
and B, having replaced the two cells meanwhile by their internal resistances (zero in 
this case). The resulting circuit is shown in figure 12.6c, giving 

10 X 10 
R=--=5n 

10 + 10 

Thus we may replace the circuit in figure 2.6b by a cell of e.m.f. E = 2.5 V, the 
positive pole being connected to terminal A, in series with a 5 n resistance. The 
current in the 20 n resistor is calculated by connecting it to the terminals of the 
equivalent network, as shown in figure 2.6d. Hence 

2.3 Norton's Theorem 

E 2.5 
I =--=--=0.1 A 

I R + 20 5 + 20 

This simply states that any two-terminal electrical network can be replaced by an 
equivalent electrical network comprising a current source I shunted by a 
conductance G. 

Thus the network in figure 2.5a can be replaced by an equivalent electrical 
network of the type in figure 2.7. The magnitude of the current supplied by the 
current source is equal to the current that would flow between the load terminals 
when they are short-circuited, and G is the conductance measured at terminals A 
and B when all supply sources in the network are replaced by their internal 
conductances. 

current 
source G 

L----4---oB 

Figure 2.7 A current generator 
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(a) (b) 

Figure 2.8 A physical interpretation of a current source 

The concept of a current source is not an easy one to grasp, and it is best 
understood from the following analogy. A current source is a generator which 
provides a constant current into every value of load resistance. Ideally, the load 
resistance can vary from zero to infinity but, in practice, the maximum value of 
load resistance has a finite value. Suppose we wish to construct a current source 
that will provide a constant current of 0.1 A into a load whose resistance can have 
any value between zero and 1 k.Q. Such a source could consist of a voltage of 1 MY 
in series with a 10 MD. resistor as shown in figure 2.8a; whatever value of load 
resistance in the range 0-1 k.Q were connected between the terminals, the load 
current would always be about 0.1 A. Thus the circuits in figures 2.8a and b may be 
regarded as equivalent to one another. From the above, we see that the output 
resistance of an ideal current source is infinity, that is, its output conductance is 
zero. In figure 2.8, any values of E and R could be used provided that the value of 
R is much greater than the maximum value of load resistance and also that 
E/R = 0.1. 

Example 2.5 

Using Norton's theorem, calculate the value of the current I 1 flowing in the 20 .Q 
resistor in figure 2.6a. 

Solution 

The magnitude of the equivalent current source is evaluated by applying a 
short-circuit to the load terminals and calculating the value of the short-circuit 
current, I, shown in figure 2.9a. Since the terminals are short-circuited 

and 

15 v 
II=--= 1.5 A 

10 n 

10 v 
I2 =--= 1 A 

10 n 
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but 

hence 

(o) 

I 

A 

~IOV 
B 

G 

35 

A 

I T6s 

B 

(b) 

A 

11 

zo n 

B 

(c) 

Figure 2.9 

That is, the value of the Norton equivalent current generator is 0.5 A, with the 
current leaving terminal A and entering terminal B. 

To determine the output conductance of the network with the 20 D load 
disconnected, the cells are replaced by their internal resistances (zero) - see 

figure 2.9b - and the conductance between the load terminals is calculated. 

1 1 
G =-+-=0.2 S 

10 10 

The 20 D load is connected between the terminals of the Norton's equivalent 

circuit of the network in the manner shown in figure 2.9c, and the load current is 

calculated using the technique outlined in section 1.15 for current sharing in 

parallel circuits. 
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1/20 0.05 
II =I X = 0.5 X = 0.1 A 

G + 1/20 0.2 + 0.05 

2.4 The Relationship between Thevenin's and Norton's Circuits 

Since all active networks can be replaced either by the Thevenin equivalent circuit, 
figure 2.10a, or by the Norton equivalent circuit, figure 2.10b, then the parameters 
of the two circuits are related to one another. For Thevenin's circuit 

hence 

or 

For Norton's circuit 

E V 
II =---

R R 

E V 
-=I +­R I R 

!=!1 + VG 

(2.7) 

(2.8) 

For the two circuits to be equivalent to one another, then equations 2.7 and 2.8 
must also be equivalent in every respect. That is 

and 

R1 

(a} 

E 
I=­

R 

1 
G=­

R 

R1 

(b) 

Figure 2.10 The relationship between (a) Thevenin's equivalent circuit and (b) 

Norton's equivalent circuit 
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The above relationships are verified by the results of examples 2.4 and 2.5. In 
example 2.4 we saw that the The venin equivalent circuit of figure 2.6a had a value 
for E of 2.5 V, and for R of 5 n. Applying the results above, we see that the 
Norton equivalent generator should have a current generator of I= 2.5/5 = 0.5 A, 
shunted by a conductance of G = 1/5 = 0.2 S. The latter values were obtained for 
figure 2.6a in example 2.5. 

2.5 The Superposition Theorem 

In a linear circuit containing several sources of e.m.f., the resultant current in any 
branch is the algebraic sum of the currents in that branch which would be produced 
by each e.m.f. acting alone, all other sources of e.m.f. being replaced meanwhile by 
their respective internal resistances. 

This principle is not confined to electrical circuits, and may be applied to many 
forms of physical and mechanical systems. 

The theorem is illustrated in its most basic form in example 2.6. 

Example 2.6 

Calculate the value of the current I in figure 2.1la using the superposition 
principle. 

(a) (b) (c) 

Figure 2.11 

Solution 

The current distribution due to each e.m.f. taken separately is calculated, the net 
circuit current being the sum of the two currents. In figure 2.11b, currentl1 due to 
the 4 V cell taken alone is 

I 1 = 4/4 = 1 A 

and flows in a clockwise direction around the circuit. Current / 2 due to the 2 V cell 
taken alone is 

/ 2 = 2/4 = 0.5 A 
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and flows in an anticlockwise direction. Applying the principle of superposition, 
the currentl flowing in a clockwise direction in figure 2.lla is 

1=11 -12 =l-0.5=0.5A 

Alternatively, we can say that a current of -0.5 A flows in an anticlockwise 
direction. 

Example 2. 7 

Calculate the current flowing in each branch of the circuit in figure 2.12a. 

Solution 

Removing the 5 V cell and replacing it by its internal resistance (zero in this case) 
gives the circuit in b. The effective resistance connected to the 10 V battery 
terminals is 

(a) 

30 X 20 
10+--=22fl 

30 +20 

lg 

I a 

10 .a 

(c) 

Figure 2.12 

30.0. 20.0. 

(b) 
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hence 

10 
I4 =-=0.455 A 

22 

Using the rules for the division of current in a parallel circuit 

20 
I 5 = 0.455 x -- = 0.182 A 

20 + 30 

30 
h = 0.455 X -- = 0.273 A 

20 + 30 

39 

Next, we remove the 10 V cell from figure 2 .12a and replace it by its internal 
resistance (zero), and calculate the current distribution in the resulting network, 
figure 2.12c. The resistance presented to the terminals of the 5 V battery is 

hence 

therefore 

and 

10 X 30 
20 + 27.5 Q 

10 + 30 

5 
I 7 =-=0.182A 

27.5 

10 
I 8 = 0.182 x --= 0.046 A 

10 + 30 

I 9 = 0.136 A 

Making due allowance for the directions of current flow in circuits b and c, the 
current distribution in figure 2.12a is 

I 1 =I4 -I9 = 0.455-0.136 = 0.319 A 

I 2 = I 7 - h = 0.182- 0.273 = -0.091 A 

I3 =I5 +Is =>0.182 + 0.046=0.228A 

2.6 The Maximum Power Transfer Theorem 

The power transferred from a supply source to a load is a maximum when the 
resistance of the load is equal to the internal resistance of the source. When this 
condition is satisfied, the load is said to be matched to the source. 

A slightly more complex situation occurs in a.c. circuits when, with a pure 
resistive load, maximum power is transferred into the load when the load resistance 
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is equal to the modulus of the impedance of the supply source (impedance is dealt 
with in chapter 6). 

The theorem is verified for the pure resistive case by reference to figure 2.13. 
Here 

E 
1=-­

r+R 

and the power consumed by the load is 

(r2 /R) + 2r + R 
(2.9) 

Clearly, when R = 0 the power consumed by the load is zero. When R = oo the load 
power is also zero since I= 0. Between the two conditions lies a value of R for 
which the power consumed is a maximum. This occurs when the denominator of 
equation 2.9 is a minimum. To determine this condition, we differentiate the 
denominator of equation 2.9 with respect toR, and equate the result to zero. 

hence 

or 

d (')2 dR [ (r2 / R) + 2r + R] = - R + 1 

R =r 

supply source 
r------------, 
I 
I 
I 

__________ ) 

R 

Figure 2.13 The maximum power transfer theorem 

(2.10) 
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To verify that the condition in equation 2.10 does, in fact, give the denominator of 
equation 2.9 a minimum value, we must check that the differential of [1 - (r/R)2 ] 

with respect to R has a positive value. 

which has a positive value. 
Hence, from equation 2.10, for maximum power to be transferred into a 

resistive load, the load and source resistances must be equal in value. 

A 

90 k.Q. 10 k.Q. 

B 

Figure 2.14 

Example 2.8 

The circuit in figure 2.14 is the equivalent output circuit of a transistor amplifier. 
Determine (a) the value of the load resistor RL to give maximum power transfer, 
and (b) the magnitude of the power delivered into the load. 

Solution 

The output resistance of the network is obtained by measuring the resistance 
between points A and B, the current generator being meanwhile replaced by its 
internal resistance (infinity, since it is a current generator) and the load resistor 
being disconnected. In the case considered, the equivalent output resistance is 

10 X 90 
r=--krl=9krl 

10 + 90 

For maximum power transfer to occur, then 

(b) The current in R L is 

r 9 h = 10 x --rnA= 10 x --9 = 5 rnA 
RL + r 9 + 
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and the power consumed by R L is 

PL = (5 X 10-3? x 9000 = 225 X 10-3 W = 225 mW 

2.7 Compensation Theorem or Substitution Theorem 

A network of resistance R which carries current I may be replaced by a 
compensation e.m.f. or substitution e.m.f. whose magnitude and polarity are equal 
to the p.d. JR. Also, if the voltage across an element or branch of resistance R is V, 
then the element or branch may be replaced by a current source of I= V/R. 

This theorem can be extended to provide a method for estimating the change in 
current distribution in a system when the resistance of one of the elements or 
branches changes by an amount oR, that is, from R toR ± oR, and is illustrated in 
example 2.1 0. 

Example 2.9 

In the network in figure 2.15a, replaceR by a compensation e.m.f. 

Solution 

The effective resistance presented to the battery terminals is 

hence 

therefore 

100.0. 

100 + 5oo x (50+ 150) = 242.9 n 
500+50+150 

/ 1 = 100/242.9 = 0.412 A 

= 500 = 0 294 A I 0•412 X 500 +50+ 150 . 

I 

50.0. 
-----Q50n 

______ I Ec = 44·14 V 

500.0. 

R = 150 .0. 

(a) (b) 

Figure 2.15 
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The magnitude of the compensation e.m.f. E c is 

Ec = IR = 0.294 x 1SO = 44.14 V 

The e.m.f. Ec is placed in the network in the manner shown in figure 2.1Sb. 

Example 2.10 

If, in figure 2.1 Sa, the value of the SOO S1 resistor is increased in value to SSO 
S1, calculate the new values of the branch currents. 

Solution 

To solve this type of problem we use both the compensation theorem and the 
superposition theorem. First, we calculate the original current distribution in the 
system. This was completed in example 2.9 to give the values 

11 =0.412A and /=0.294A 

hence 

12 =/1 -/=0.118A 

Next we re-draw the circuit diagram to show the circuit with the modified value of 
resistance of SSO S1 together with a compensation e.m.f. / 2 oR, where oR= SO S1. 
In this circuit the original voltage source is replaced by its internal resistance (zero), 
the complete circuit to calculate the changes in current distribution being shown in 
figure 2.16. The changes in network current due to the introduction of the 
compensation e.m.f. are 0/1 , 0/2 , and 0/. If the currents in the final circuit are I 1 ' 

12 ', and t, then bearing in mind the directions of flow of current, their values are 

compensation 
e.m.f. 

8! 

5oo n 

8R=5o n 

Figure 2.16 

5o +150=200 n 
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calculated from the relationships 

It' =It -Oft 

I{= Iz- 0/z 

I'=I+O/ 

The resistance presented to e.m.f. I 2 oR is 

sso + ~~~: ~~~ = sso + 66.67 = 616.67 n 

The magnitude of the compensation e.m.f. is 

I 2 oR = 0.118 x 50= 5.9 V 

hence 

5.9 
0/2 = 616_67 = 0.0096 A 

also 
100 

OJ= 0/z x = 0.0032 A 
100 + 200 

and 
200 

Oft = 0/z x = 0.0064 A 
100 + 200 

The final values of current in the circuit are 

I/= It -Oft = 0.412- 0.0064 = 0.4056 A 

I{= I 2 -0/2 = 0.118- 0.0096 = 0.1084 A 

I' =I+ OJ= 0.294 + 0.0032 = 0.2972 A 

2.8 Delta-Star Transformation 

The delta and star configurations of components, in figures 2.17a and b, 
respectively, occur frequently in electrical circuits. It is convenient in some cases to 
convert a delta network into its equivalent star circuit, and vice versa. In this 
section we deal with the delta-star conversion. 

When the two circuits in figure 2.17 are identical to one another, then the 
resistance measured between any pair of terminals on the delta circuit is equal to 
the resistance measured between the same pair of terminals on the star circuit. 
Thus, the resistance appearing between terminals 1 and 2 on the delta circuit must 
have the same value as the resistance between terminals 1 and 2 on the star circuit, 
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3 

that is 

2 

3 
(b) 

Figure 2.17 The delta-star transformation 

R12(R13+R23) 
R 1 o + R 2 o = --=--=-'---':...c;_--=--=c:. 

R12 +R23 +R13 

The resistance measured between terminals 2 and 3 is 

and between terminals 1 and 3 is 

R13(R12+R23) R 1 o + R 3 o = --'--"-';______::-=-_ _::_::_:_ 

R12 + R2 3 + R13 

Subtracting equation 2.12 from equation 2.11 gives 

R12R13 -R13R23 
R 1 o - R 3 o = --=-=--=--='----:....::__--=-::: 

R12 + R2 3 + R13 

2 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

By adding equations 2.13 and 2.14 and dividing the result by 2, we obtain the 
following equation 

R12R13 R 1 o = __ __.:_:'-----'-=--

R12 +R23 +R13 

Using a similar technique, the following relationships are deduced 

R12R2 3 
R2o=--~~~--

R12+R23+R13 

(2.15) 

(2.16) 

(2.17) 
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Hence, the equivalent resistance connected between an input terminal and the star 
point is given by the product of the two delta resistances connected to the terminal 
divided by the sum of the three resistances in the delta. 

In some circuits the delta is shown in the form of a rr-circuit - see 
figure 2.18a - and the star is shown as a T -circuit - see figure 2.18b. When 
converting from the rr-circuit to the T -circuit, equations 2.15-2.17 hold good. 

3~--~----------~~~3 

(a) (b) 

Figure 2.18 The rr-T transformation 

Example 2.11 

Calculate the resistance between terminals A and B in figure 2.19a. 

2 

40 Sl. 

~------<8 

(a) 
3 

2 

A 

Figure 2.19 
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Solution 

We first convert the set of delta-connected resistors between points 1, 2, and 3 in 
figure 2.19a into the star combination R 1 0 , R 2 0 , R 3 0 in b as follows 

10 X 20 
R = = 3.33 n 

I O 10 + 20 + 30 

10 X 30 
R = = 5 n 2 0 10 + 20 + 30 

20 X 30 
R = = 10 n 3 0 10 + 20 + 30 

Hence, from figure 2.19b 

(5 + 40)(10 +50) 
R =3.33+ =29.04.Q 

A B 5 + 40 + 10 + 50 

2.9 Star-Delta Transformation 

If we short-circuit terminals 2 and 3 in both the delta and star networks in 
figures 2.17a and b, the circuits in figures 2.20a and b remain. The conductance 
measured between terminals Wand X in figure 2.20a is 

Gwx = G 12 + G 1 3 

From the work in section 1.13, we see that for figure 2.20b 

G _ G1 o (G2 o + G3 o) 
vz-
~ G1o+G2o+G3o 

Equation the relationships for Gwx and Gy z gives 

G1o (G2o + G3o) G I 2 + G I 3 = __::__:_.:..__:;._:_ _ ___::__:_;_ 
G1 o + G2 o + G3 o 

2 

~ (~ 

Figure 2.20 The star-delta transformation 

(2.18) 

2 
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If we now remove the above short-circuit and re-apply it between terminals 1 and 3 
in both the star and delta networks, we obtain the relationship 

Repeating the above procedure between terminals 1 and 2 yields 

G3o(G1o+G2o) 
G13 +G23 = 

G1 o + G2 o + G3 o 

(2.19) 

(2.20) 

Manipulating equations 2.18-2.20 in much the same manner as we used equations 
2.11-2.13 in section 2.8, the following results are obtained 

G1 oG2 o G I 2 = __ _:_:c.__::_:__ 

G1 o + G2 o + G3 o 
(2.21) 

G2 oG3 o 
G2 3 = -----=-=--='--'-

GI 0 + G2 0 + G3 0 
(2.22) 

G1 oG3o G I 3 = __ _:__:c__:-"--

GI 0 + G2 0 + G3 0 
(2.23) 

The above expressions are related to the resistance values in the circuit as follows 

1 R1oR2o 
R12 =-=Rio +R2o +--'-_::__--=-= 

G12 R3 o 
(2.24) 

1 R2oR3o 
R23 =-=R2o +R3o +---

G23 R1 o 
(2.25) 

1 R1 oR3 o 
R13 =-=Rio +R3o +---"--'-------''--' 

G13 R2o 
(2.26) 

Example 2.12 

Calculate the resistance between points A and B in figure 2.21a. 

Solution 

We replace the star-connected combination of resistors of values 20, 30 and 50 n 
with a delta-connected set in the manner shown in figure 2.2lb. In this circuit, 
from equation 2.24 
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A 

also 

and 

2 

0 

{b) 

Figure 2.21 

30 X 50 
R2 3 = 30 +50+--= 155 n 

20 

20 X 50 
R,3 = 20 +so+ -----w--- = 103.33 n 

49 

8 

The parallel combination of R 12 and 10 S1 has a value of 8.61 n, and the parallel 

combination of R 2 3 and 40 S1 has a value of 31.79 n. Hence 

103.33 (8.61 + 31.79) 
R = = 29.04 n 

AB 8.61 + 31.79 + 103.33 

(See also the solution of example 2.11.) 

2.10 Mesh or Loop Current Analysis 

If we apply Maxwell's circulating-current method to a multi-mesh network, we find 

that the resulting equations follow a logical sequence, from which we can derive a 

method for writing down the equations by inspection. For the circuit in 
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Figure 2.22 Mesh or loop analysis 

figure 2.22, the mesh equations are 

Mesh 1 £ 1 =I1(R 1 +R2 +R 3)-I2R2 -l3R3 

Mesh2 £ 2 =-I1R 2 +/2(R2 +R4 +Rs)-I3Rs 

Mesh 3 E 3 =- l1R3 - l2Rs + !3(R3 + Rs + R6) 

The above equations can be re-written in a more convenient 'standard' form as 

follows 

£ 1 =I1R 11 +12(?. 12 +I3R 13 

E2 =I1R21 +l2R22 +l3R23 

£3 =I1R31 +I2R32 +/3R33 

(2.27) 

where £ 1 =total e.m.f. acting in loop 1; £ 2 =total e.m.f. acting in loop 2; 

E 3 =total e.m.f. acting in loop 3. 
Note The e.m.f.s in equations 2.27 all have positive signs since they act in a 

direction to produce a clockwise circulating current within their own mesh. 

R 1 1 = self-resistance of loop 1 = R 1 + R 2 + R 3 
R 2 2 =self-resistance of loop 2 = R 2 + R 4 + R 5 

R 3 3 =self-resistance ofloop 3 = R 3 + R 5 + R 6 

In order to determine the self-resistance of each loop, replace each generator in the 

loop by its internal resistance, and open-circuit all other loops, then calculate the 

loop resistance. 
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R12 = R 2 1 = (-1) x the mutual resistance associated with loops 1 and 2 = -- R 2 

R 1 3 = R 3 1 = ( -1) x the mutual resistance associated with loops 1 and 3 = - R 3 

R2 3 = R 3 2 = ( -1) x the mutual resistance associated with loops 2 and 3 =- R 5 

The mutual resistance associated with two loops is the resistance which causes a 
potential drop in one loop due to a current in the other. Thus R 1 3 is the mutual 
resistance which causes a p.d. in loop l due to the flow of current I 3 in loop 3. If 
no such p.d. exists (see example 2.13), then we say that R 1 3 = 0. In order to 
determine the mutual resistance associated with two loops, replace each genenttor 
in the mutual branch by their internal resistances and open-circuit all other 
branches. Calculate the resistance of the mutual branch. 

The currents in the loops are calculated by solving equations 2.27. 

Example 2.13 

Derive the mesh equations for the circuit in figure 2.23. 

mesh 1 mesh 2 mesh 3 

Figure 2.23 

Solution 

The self-resistance of loop 1 in which I 1 circulates is (R 1 + R 2 + R 3 ), and the 
resistance in the mutual branch between meshes 1 and 2 is R 2 , hence 
R 11 =R 1 +R2 +R 3 and R 12 =-R2. Since no branch exists that is common to 
both mesh l and mesh 3, then R 13 = 0. Also, in mesh 1, e.m.f. EA acts in a 
direction to produce a clockwise circulating current, then E 1 = E A and, for mesh 1 
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In mesh 2 

heilce, for mesh 2 

£2 =0 

R 21 = -Rz 

R2 2 = R2 + R4 + Rs + R6 

R23 = -Rs 

Electrical Circuits and Systems 

0 = -lzRz + /2(R2 + R4 + Rs + Rd- !3Rs 

In mesh 3, e.m.f. £ 8 acts in a direction which opposes the clockwise circulation of 
current, so that £ 3 =- £ 8 . In this mesh 

R31 =0 

R32 =- Rs 

R3 3 = Rs + R1 + Rs 

therefore, for mesh 3 

2.11 Nodal Voltage Analysis 

Nodal analysis enables us to write down a set of equations for a given circuit in 
terms of the voltages appearing at each of the nodes in the circuit. Let us consider 
the application of nodal analysis to figure 2.24a. When using this technique, voltage 
sources are first converted into their equivalent current sources, and the resistance 
of each branch is converted into its equivalent conductance. 

Thus the voltage source E A together with its series resistance R A is converted to 
its equivalent current source in figure 2.24b, and comprises current source 
h =EAIRA shunted by conductance GA = 1/RA (see section 2.4). Also, voltage 
source EB with its series resistance RB is converted into current source / 2 = EBfRB 

shunted by conductance GB = 1/RB. The conductances between pairs of nodes are 
then grouped together to simplify the circuit to the form shown in figure 2.24c, in 
which 

Since all voltages in the circuit are measured with respect to node 3, we describe 
this node as the reference node, and all voltages are understood to be measured 
from this node. That is V1 = V1 3 and V2 = V2 3 . 
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3 
(a) 

3 
(b) 

3 
(c) 

2 

3 

I 
I 
I 
I 
I 
I 
I 

~ 
~ ____ ---~ G2 

3 

2 

3 

Figure 2.24 Nodal or voltage analysis 

53 
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I 1 1 lx 

Iw 

v, G, t. 
ly 

3 3 

(a) (b) 

Figure 2.25 Conditions at (a) node 1, and (b) node 2 

In order to write down the equations for the sum of the currents at each node, 
we isolate the nodes in the manner shown in figure 2.25. Since the total current 

flowing towards node 1 from the current source is I 1 , then 

For node 2 

/1 =Iw +Ix = V1G1 +(V1- V2)G3 

=VI (Gl + G3)- V2G3 

/2 =/y + lz = V2G2 + (V2- VI)G3 

=- V1G3 + V2 (G2 +G3) 

(2.28) 

(2.29) 

Equations 2.28 and 2.29 are written in a more convenient generalised form below 

11 = v! G1 1 + V2 G1 21 

12 = V1G12 + V2 V22 
(2.30) 

where I 1 = the total current flowing towards node 1 from all current sources; 
I 2 = total current flowing towards node 2 from all current sources; and 

also 

G11 =total conductance terminating on node 1 = G1 + G3 

G2 2 = total conductance terminating on node 2 = G2 + G3 

G12 = ( -1) x the conductance linking node 1 and node 2 = -G3 

G21 = (-1) x the conductance linking node 2 and node 1 = -G3 
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In the case of a circuit with three principal nodes (in addition to which we have the 
reference node, making four nodes in all), the network equations are written in the 
generalised notation as follows 

Example 2. I 4 

/1 =VIGil+ V2Gl2 + V3Gl31 

12 = VIG21 + V2G22 + V3G23 

/3 = V1 G31 + V2G32 + V3G33 

Derive the node voltage equations for the network m figure 2.26. 

3 

reference node 

Figure 2.26 

Solution 

(2.31) 

The three voltage generators are converted into their equivalent current generators 
and are connected into the circuit in the manner shown in figure 2.27, in which 
!Aj=EA/Ri, IB =EB/R2, Ic =Ec/R?I G1 = 1/R 1 , G2 = 1/R 2 , etc. The currents 
produced by these generators act in the same direction as the e.m.f.s of the voltage 
generators. Using the notation developed in this section 

/1=/A-/B 

/ 2 = 0 

/3 =- Ic 

Readers will note that no current generators are connected to node 2, hence the 
current flowing into node 2 from current sources is zero, so that / 2 = 0. Also, 
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I, 

v, 

Figure 2.27 Example 2.14, showing the equivalent current generators 

current Ic flows away from node 3, hence ! 3 =-I c. The total admittances 

terminating on the nodes are 

and the conductances linking the nodes are 

Since the circuit has three principal nodes, the nodal equations have the general 

form given in equation 2.31. Inserting the values above into equation 2.31 gives the 

following equations. Node 1 
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2.12 Millman's Theorem or the Parallel-generator Theorem 

Certain types of problem are related to one particular node in the circuit, several 

examples arising in three-phase a.c. systems. The theorem outlined here represents a 

particular application of nodal analysis. This theory states that the voltage V 0 • 0 

appearing between terminals o' and 0 in figure 2.28a is given by the expression 

where G1 = 1/R 1 , G2 = 1/R 2 , G3 = 1/R 3 , and "'£,G = G1 + G2 + G3 • In the general 

case where there are n generators in parallel, then 

k=n 
"'£, Eko Gk 

Vo·o = 
k=l 

k=n 
"'£, Gk 

k=l 

£1- R1 

£2- 2 

£3------- 3 

I 

0 
Vo'o 

0 

(a) 

11 

12 

13 

G1 
I 

G2 

G3 

0 
I 

Vo'o 
0 

(b) 

Figure 2.28 Millman's theorem 
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where Eko is the potential of node k with respect to node 0, and Gk is the 
conductance connecting node k to node 0'. 

To verify the theorem in the case of figure 2.28a, we convert the voltage sources 
into their equivalent current sources as shown in figure 2.28b, where I 1 =E1/R 1, 
I 2 = E 2 /R 2 , and I 3 = E 3/R 3. The total current flowing towards node 0' is 
I=I 1 +I2 +I3 , and this current generates the voltage V0 ·0 across conductance 
(G1 + G2 + G3 ), hence 

or 

EIGI +E2G2 +E3G3 v 0' 0 = --=-----=-----=-----=----=---= 
G1 + G2 + G3 

Expressed in mathematical form, the above is given as 

Example 2.15 

k=3 
L EkO Gk 

Vo·o =-'-k=_l __ _ 
k=3 
L Gk 

k=l 

Four electrical generators having e.m.f.s of 100, 110, 90, and 105 V with internal 
resistances of 5, 10, 2, and 12 n, respectively, are connected in parallel. Calculate 
the output voltage from the combination and also their combined output 
resistance. 

Solution 

Let 

E 1 =100V,G1 =1/5=0.28 
E 2 = 110V,G2 = 1/10=0.1 S 
E 3 = 90 V, G3 = 1/2 = 0.5 S 
£ 4 = 105 V, G3 = 1/12 = 0.083 S 

From Millman's theorem, the output voltage is 

(100 X 0.2) + (110 X 0.1) + (90 X 0.5) + (105 X 0.083) 
Vo·o = 0.2 + 0.1 + 0.5 + 0.083 = 95 ·94 V 

And the output resistance is 

Rout= 1/LG = 1/0.883 = 1.13 n 
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Note The above calculation provides the parameters for the Thevenin's circuit 
equivalent generator of the combination. 

2.13 The General Star-Mesh Transformation (Rosen's Theorem) 

It is possible to transform a star network of n components which are connected 
from a star point 0' to n separate terminals (figure 2.29a) into a corresponding 
mesh network (figure 2.29b). In the mesh network, n conductances G12 , G13 , G14, 

... , Gln• terminate on terminal (or node) 1. The equivalent conductance 
connected between the pair of terminals u and v in the network is 

(2.32) 

Equation 2.32 is a precise mathematical expression which describes the transfor­
mation, in which Gu is the conductance connected between terminal u and the star 
point, Gv is connected between terminal v and the star point, and "i:.Gk is the sum 
of all the values of the conductances in the star system. 

The transformation can be verified by applying Millman's theorem to the 
network, but in this case we connect terminal 1 to the reference node (terminal 0 
in Millman's theorem) so that V1 = 0, giving 

rr V2 1 G2 + V31 G3 + ... 
YQ'l =~~~--~~----

Gl + G2 + G3 + ... 

Thecurrent/1 flowinginG 1 due to Vo• 1 is 

V21G1G2 + V31G1G3 + ... I I = v 0' 1 G I = ---=~--=---=----=....::.___;:._=----­
GI + G2 + G3 + ... 

GIG2 GlG3 = V21 + V31 + ... 
G1 + G2 + G3 + . . . G1 + G2 + G3 + ... 

That is, the current flowing into terminal 1 is the sum of a number of currents, and 
the current flowing from terminal 2 to terminal 1 is due to a conductance of 
G1 G2/"f.G connected between terminals 1 and 2. The component of current 
flowing to terminal 1 from terminal 3 is due to an equivalent conductance of 
G1 G3/"f.G connected between terminals 1 and 3, etc. That is, the equivalent 
conductance linking the pair of terminals u and v is given by equation 2.32. 

Only in the special case of three terminals is it possible to provide a unique 
transformation from a mesh circuit to a star circuit. 

Example 2.16 

Convert the star circuit in figure 2.30a into the mesh circuit shown in figure 2.30b. 
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Figure 2.29 The general star-mesh transformation 
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2 

30.0. 

4 3 4 3 

(a) (b) 

Figure 2.30 

Solution 

In figure 2.30a, let G1 = 0.1 S, G2 = 0.05 S, G3 = 0.033 S, G4 = 0.025 S, hence 
'E.G= 0.208 S. From equation 2.32 

Therefore 

Gl 2 = 0.1 X 0.05/0.208 = 0.024 s 
Gl 3 = 0.1 X 0.033/0.208 = 0.016 s 
G14 =0.1 x0.025/0.208=0.012S 
G2 3 = 0.05 X 0.033/0.208 = 0.0079 s 
G2 4 = 0.05 X 0.025/0.208 = 0.006 s 
G34 = 0.033 X 0.025/0.208 = 0.004 s 

R12 =41.70. 
R13 = 62.5 D. 
R14 = 83.3 D. 
R 23 = 126.6 D. 
R 2 4 = 166.7 D. 
R 34 =250D. 

Summary of Essential Formulae 

Kirchhoff's laws 
at any node 'E./= 0 
in any mesh "'E.JR = 'E. V 
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Delta-star transformation (see figure 2.17) 

R1o =R12R13/(R12 +R23 +R13) 
R2o =R12R23/(R12 +R23 +R13) 
R3o =R13R23/(R12 +R23 +R13) 

Star-delta transformation (see figure 2.20) 

Millman's theorem 

R12 =R1o +R2o +R1oR2o/R3o 
R23 =R2o +R3o +R2oR3o/R1o 
R13 =R1o +R3o +R1oR3o/R2o 

Vo·o 
E1G1 + E2G2 + E3G3 

G1 + Gz + G3 

General star-mesh transformation 



3 Electromagnetism 

3.1 Magnetic fields 

Since we do not fully understand what a magnetic field is, we simply say that it is a 
condition of space. The presence of a magnetic field is detected by its effects, such 
as those on an electric current, or on iron filings, or on a permanent magnet. The 
direction in which the magnetic field acts at a particular point is given by the 
direction in which the force would act on an isolated north-seeking pole (aN-pole) 
at that point. The theoretical concept of an isolated north pole is one which is used 
simply to define certain aspects of magnetic fields. When we refer to a N-pole, we 
imply that the pole experiences a force in the earth's magnetic field towards the 
earth's north pole. Similarly, aS-pole is a south-seeking pole. 

If our isolated N-pole were free to move in space, it would move in the direction 
of the force acting on it, that is, in the direction of the magnetic field, and would 
trace out a line of magnetic flux. This line of flux is, in fact, stationary but in some 
instances it is convenient to assume that the flux 'flows' around the magnetic 
circuit. 

A magnetic circuit is simply an interconnected set of branches in which a 
magnetic flux is established, and has an almost exact analogy with the electrical 
circuit (see also section 3.16). The magnetic flux that is established in a magnetic 
material can occur as a result of either (i) permanent magnetism in the material or 
(ii) a magnetic field produced by a current flowing in a coil which surrounds part of 
the material. In the latter case we describe the coil as a solenoid if it is air-cored, 
and as an electromagnet if it has an iron core. The current in the coil is known as 
the excitation current. 

3.2 Electromagnetic Induction 

When a current flows in a solenoid a magnetic flux is established in the magnetic 
circuit; the larger the value of excitation current, the larger the value of magnetic 
flux. The converse of this is also true, that is, if the flux linking with a solenoid is 
altered then an e.m.f. is induced in the coil, and would cause a current to fldw in 
the coil if the electrical circuit is complete. This is the basis of electromagnetic 
induction. 

The induced e.m.f. can be due to a number of causes. If, for example, the 
exciting current in the coil is increased, then the magnetic flux linking with the coil 
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increases. This causes an e.m.f. to be induced in the coil due to the change of 
current, and is known as a self induced e. m.f If the induced e.m.f. is due to 
the change of flux in another coil which is magnetically linked with or magnetically 
coupled to the first coil, it is known as a mutually induced e.m.f; the operation of 
transformers is based on the fact that e.m.f.s are induced in mutually coupled coils. 
The e.m.f. can also be induced as a result of relative movement between the coil 
and the magnetic field, and is known as induction by motion, and is the basis of the 
electrical generator. 

These effects are summarised by the laws of electromagnetism, which are given 
below. 

Faraday's law 

An induced e.m.f. is established in a circuit whenever the magnetic field linking that 
circuit is changed. 

Neumann's law 

The magnitude of the induced e.m.f. is proportional to the rate of change of the 
magnetic flux linking the circuit. 

Lenz's law 

The induced e.m.f. acts to circulate a current in a direction that opposes the 
change in flux which caused the induced e.m.f. 

3.3 Magnetic Flux and Flux Density 

Resulting from the laws stated in section 3.2, the e.m.f. e induced in a coil of N 
turns when the flux linking with it is changing is 

d<P 
eo:N­

dt 
(3.1) 

where d <P is the change in magnetic flux linking the circuit. The unit of flux is 
the weber, Wb. The dimensions of the quantities in equation 3.1 used in the SI 
system are chosen so that the coefficient of proportionality in equation 3.1 is 
unity, and 

dcP 
e=N­

dt 
(3.2) 

In some instances, the electrical transformer (see chapter 9) being an example, the 
polarity of the e.m.f. induced in an electrically isolated winding depends on the 
terminal selected as the reference node in the circuit. In such cases the induced 
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e.m.f. may be of the opposite polarity to that applied to the primary winding which 
produces the flux. In this case equation 3.2 is re-written as 

dcP 
e=-N­

dt 

Equations 3.2 and 3.3 are sometimes combined in the following form 

d(N(P) 
e=±--

dt 

where the term N 4> is known as the magnetic flux linkage (Wb turns or Wb ). 

(3.3) 

(3.4) 

The equations given above give the instantaneous value of the induced e.m.f. The 
average value of induced e.m.f. can be calculated as follows. Suppose that flux 1> 1 

links with a circuit at time t 1 , and its value changes to ct> 2 in a time interval t 2 - t 1 

(figure 3.1). The change in flux dcP = ( cf>2 - rJ>d occurs in time 
dt = (t 2 - t d, and the average e.m.f. E induced in the coil is 

(3.5) 

The mechanism of inducing an e.m.f. is illustrated in figure 3.1. If the flux changes 
along line A in figure 3.1a, the rate of change of flux is uniform. The net result is 
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Figure 3.1 The relationship between the rate of change of magnetic flux and the 
induced e.m.f. 
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that the induced e.m.f. has a constant value during the time interval between t 1 

and t 2 • On the other hand if the flux change is non-linear as in curve B in 
figure 3.la, then the curve of the instantaneous value of induced e.m.f. in the 
circuit is also non-linear, shown in curve B' in figure 3.1 b. Nevertheless, since the 
flux change is the same in the cases of curves A and B, then the average value of the 
induced e.m.f. is the same in both cases. 

The magnetic flux density, B, is the amount of flux passing through unit area 
and has the unit of the tesla, T, where 

magnetic flux rp 
B = = tesla 

area perpendicular to the flux A 

where rJJ is the magnetic flux in webers and A is the area in m2 perpendicular to the 
flux path through which the flux passes. Thus one tesla is equivalent to a density of 
one Wb/m2 • 

Example 3.1 

The flux linking an air-cored coil of 500 turns changes from 30 t.tWb to 60 t.tWb in 
2 ms. Calculate the value of the e.m.f. induced in the coil. 

Solution 

dcP= 60- 30 = 30 t.tWb 

dt=2ms 

hence 

e=NdrJJ=SOOx30x10-6 = 7.SV 
dt 2 x w- 3 

Example3.2 

The flux density in a magnetic circuit of area 300 cm2 is 0.01 T. Calculate the value 
of the magnetic flux in the circuit. 

Solution 

From the relationship B = 1/J/A then 

cP =A B = 300 x (10-2 ) 2 x o.o1 = 300 x w-6 Wb 

= 300 t.tWb or 0.3 mWb 
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s 

Figure 3.2 The e.m.f. induced in a single conductor when it cuts magnetic flux 

3.4 Induced E.M.F. due to Motion 

Suppose that the conductor shown in figure 3.2, having an active length I in the 
magnetic field is moved through distance x in t seconds. If the flux density in the 
air gap is B tesla, then the flux cut by the conductor when it moves from X to Y is 

change in flux= B x area= Blx Wb 

and if the linear velocity of the conductor is v m/s, then 

v =x/t m/s 

From equation 3.5, the average value of e.m.f. induced in the conductor (which is 
equivalent to part of a coil of one turn) is 

E = change in flux = Blx = Blv volts 
timet xjv 

(3.6) 

Should the direction of motion of the conductor be at angle 8 to the direction of 
the magnetic field as shown in figure 3.3, then the rate at which the flux lines are 
cut is reduced when compared to the case where the conductor movement is 
perpendicular to the field. The equation for the average induced e.m.f. then 
becomes 

E =Blv sin 8 (3.7) 

Readers will note from equation 3.7 that when the conductor moves in the same 
direction as the flux lines (8 = 0), no flux is cut and the induced e.m.f. is zero. 
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Figure 3.3 The effect of moving a conductor at an angle to the field 

Example 3.3 

A conductor of active length 0.3 m moves perpendicular to a magnetic field at a 

velocity of 50 m/s. Calculate the average value of the e.m.f. induced in the 
conductor if the magnetic flux density is 0.5 T. 

Solution 

E = Blv = 0.5 x 0.3 x 50= 7.5 V 

Example 3.4 

The average e.m.f. induced in a conductor of length 0.6 m is 0.5 V. The 

conductor moves at an angle to a magnetic field of tlux density 0.3 Tat a velocity 

of 10 m/s. Calculate the value of the angle between the direction of movement of 

the conductor and the direction of the magnetic field. 

Solution 

E = Blv sine 

hence 

sine= E/Blv = 0.5/(0.3 X 0.6 X 10) = 0.2778 

or 

3.5 Fleming's Right-hand Rule 

The direction in which the induced e.m.f. acts in a conductor can be deduced by 

the use of Fleming's right-hand rule as follows. 
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If the thumb, first finger and second finger of the right hand are held so that 
they point in directions that are mutually perpendicular (see figure 3.4) then if the 
First finger points in the direction of the magnetic Flux, and the thuMb points in 
the direction of the Motion of the conductor, then the sEcond finger points in the 
direction of the induced E.m.f. 

That is 

First finger - direction of magnetic Flux 
sEcond finger- direction of E.m.f. 
thuMb -Motion of conductor relative to the flux 

To illustrate the application of this rule we will consider the electro-mechanical 
systems in figure 3.5. In figure 3.5a the conductor moves to the left relative to the 
magnetic field, and the direction of the magnetic flux is from the N-pole to the 
S-pole. Applying Fleming's right-hand rule we see that the direction of the induced 
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Figure 3.5 Application of Fleming's right-hand rule 
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e.m.f. would be such as to cause a current to flow into the paper. Since current flow 
is represented by means of an arrow, we indicate that current is flowing away from 
the reader (that is, into the paper) by showing the 'tail' or 'crossed feathers' of the 
arrow on the conductor. 

Applying Fleming's right-hand rule to figure 3.5b indicates that the induced 
e.m.f. acts in a direction to cause current to flow out of the paper. This fact is 
indicated by the dot in the centre of the conductor, and which represents the 
'point' of the arrow approaching the reader. 

3.6 Direction of the Magnetic Field Around a Conductor 

It was stated in section 3.1 that the direction of the magnetic field at any point is 
given by the direction in which an isolated N-pole would move if placed at that 
point. Since an isolated pole is a theoretical concept; experiments are often carried 
out with compass needles and, in the case of a straight cylindrical conductor, the 
magnetic flux lines are found to follow a circular path around the conductor in the 
manner shown in figure 3.6a. Moreover, the direction of the magnetic field is found 
to be related to the direction of flow of the current. Reversing the direction of flow 
of current reverses the direction of the magnetic field. 

A simple and convenient method of relating the directions of magnetic field to 
that of the current is given by the screw rule. If we imagine the wood screw in 
figure 3.6b to point in the direction of flow of current, then in order to propel the 

magnetic 
flU)( 

(a) 

{b) 

/ 
I 

,-- ..... 

Figure 3.6 The screw rule 
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screw forward in the direction of the current, we turn the screw head in a clockwise 
direction, that is, in the same direction as the magnetic field. 

Alternatively, we may use a mnemonic known as the right-hand screw rnle which 
states that if the conductor is grasped with the right hand with the thumb 
outstretched parallel to the conductor and pointing in the direction of the flow of 
current, then the fingers point in the direction of the magnetic field around the 
conductor. 

3.7 Flux Distribution in a Coil 

In the case of a single-turn coil (figure 3.7) the flux distribution along section AB is 
as shown in the plan view in the upper part of the diagram. Since the current flows 

N 
\ \ I I \ 

\ \ I I 

' \ I I 
I 

~ -------/ ' I / -/ ' \ I / ' / ' \ I I I 
I 

/ ' ' / I / 
I ..... -- ....... \ I I I I \ 

I 
/ ' \ I I I I I / ' \ 

I \ I 
~ + + 

I {®s t ~ ~ A~)f + t + 
t 

' / I I I \ / I 
I --- / I 

I I I ' --- / I \ / I I \ I 

' / I I I I ' / 
' / ' ' ' / / I I I \ ' / / 

------- I I \ ' -I 
I I I \ 

I \ 
I I I \ 

I I \ 
I ' I I ' s 

Figure 3.7 Magnetic field produced by a current flowing in a single turn ofwire 
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Figure 3.8 Magnetic field produced by the current in a solenoid 

upwards at point A, then the flux path at that point is anticlockwise. At point B 
the direction of the current is downwards, so that the flux path follows a clockwise 
path. The net result, shown in the figure, is that a N-pole is formed on one side of 
the coil, and a S-pole is formed on the other side. 

The flux pattern associated with a solenoid or a multi-turn coil can be deduced 
from the foregoing. A section through a solenoid is shown in figure 3.8. The 
resultant flux pattern is deduced by the application of the rules given above, and we 
see that the bulk of the magnetic flux leaves the left-hand end of the solenoid and 
enters the right-hand end. In this way aN-pole is formed at the left-hand end, and a 
S-pole at the right-hand end. Not all the flux follows the main path, illustrated in 
the cases of paths X andY. 

In many applications the useful magnetic flux is that which either enters or 
leaves the ends of the solenoid. The flux which fails to follow the 'useful' path is 
known as magnetic leakage or fringing, and is accounted for in calculations by 
means of a factor known as the leakage coefficient as follows 

total magnetic flux produced 
leakage coefficient = f 1 . fl 

use u magnetic ux 

In a well-designed magnetic system, for example, an electrical machine, the value of 
this coefficient may lie in the range 1.15 to 1.25. 

3.8 Direction of the Force Acting on a Current-carrying Conductor in a Magnetic 
Field 

The flux distribution around an isolated current-carrying conductor takes the form 
shown in figure 3.9a. When the conductor is placed in a magnetic field (see 
figure 3.9b), the flux lines produced by the current in the conductor assist 
the main magnetic field on the right-hand side of the conductor, and oppose it to 
the left of the conductor. The net result is a distortion of the magnetic field, with 
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(a) 

(b) 

Figure 3.9 Force acting on a current-carrying conductor in a magnetic field 

the flux being increased on the right-hand side of the conductor and reduced on 
the left-hand side. 

In this situation the conductor experiences a mechanical force F acting to 
displace it from the region where the field is strongest to where it is weakest. That 
is, from right to left in the figure. 

This is the basis of the electrical motor, and is also the principle upon which the 
electromagnetic deflection of cathode rays in television tubes is based. In the latter 
case the current is simply a beam of electrons in motion, the amount by which 
'current elements' are deflected depends on the strength of the magnetic field. 

From figure 3.9 readers will note that the directions of the electric current, the 
magnetic flux and the mechanical force are mutually perpendicular to one another. 
In any particular case their relative directions can be deduced by use of Fleming's 
left-hand rnlet as follows 

If the thumb, first finger and second finger of the left hand are held so that they 
point in directions which are mutually perpendicular to one another (see figure 
3.10), then if the First finger points in the direction of the magnetic Flux and the 
seCond finger points in the direction of the flow of Current, then the thuMb points 
in the direction of the force acting on the conductor, that is, it gives the direction 
of the Motion of the conductor. 

That is 

First finger - direction of magnetic Flux 
seCond finger - direction of Current 
thuMb -direction of Motion of the conductor 

tTo recall that Fleming's left-hand rule applies to motor action, simply remember that motors 
drive on the left-hand side of the road in Britain. 
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3.9 Magnitude of the Force on a Current-carrying Conductor in a Magnetic Field 

It has been determined experimentally that the force F experienced by the 
conductor in figure 3.9 is given by the expression 

F = BIZ newtons (3.8) 

where B is the flux density in tesla, I is the current in the conductor in amperes, 
and I is the active length of the conductor, in metres, in the magnetic field. 

Example 3.5 

A conductor carries a current of 50 A in a flux density of 0.25 T, the length of the 
conductor being perpendicular to the magnetic field. If the active length of the 
conductor is 0.6 m, calculate the value of the force acting on the conductor. 

Solution 

F=BII = 0.25 X 50 X 0.6 = 7.5 N 
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3.10 Force Between Parallel Current-carrying Conductors 

In the case of conductors that carry currents in opposite directions (see 
figure 3.11a), the force FA acting on conductor A is due to the interaction between 
the current in A and the magnetic flux produced by the current in B. Similarly, 
force FB acting on conductor B is due to the interaction between the current in B 
and the flux produced by the current in conductor A. Applying Fleming's left-hand 
rule to each of the conductors in figure 3.11 a, we deduce that the directions of the 
forces are as shown and that there is a force of repulsion between the two 
conductors. 

Where the conductors carry currents in the same direction, figure 3.11b, the 
force between the conductors is one of attraction. 

3.11 Magnetomotive Force (F) and Magnetic Field Intensity (H) 

The magnetomotive force (m.m.f.) is the force that causes a magnetic flux to be 
established. Comparing magnetic and electrical circuits, magnetic flux and electrical 
current are analogous quantities, as are the m.m.f. and e.m.f. in magnetic and 
electrical circuits respectively. 

The m.m.f., symbol F, is proportional to the current flowing in the circuit or 
coil, and is also proportional to the number of turns, N, on the coil, hence 

F =IN ampere turns (At) or amperes (3.9) 

Since N is a number or numeric and has no dimensions, then F may be given the 
dimensions of amperes. 

The magnetic field intensity (known also as the magnetising force or the 
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Figure 3.11 Force acting between current-carrying conductors 
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magnetic field strength), symbol H, is the m.m.f. per unit length, as follows 

H = F/1 =IN/I At/m or A/m 

where I is the length of the magnetic circuit in metres. 

Example 3.6 

(3.10) 

A 200-turn coil carries a current of 5 A. If the length of the coil is 0.1 m, calculate 
(i) the m.m.f. produced by the coil and (ii) the magnetic field intensity inside the 
coil. 

Solution 

(i) F =IN= 5 x 200 = 1000 At or A 
(ii) H=F/1= 1000/0.1 = 10000At/morA/m 

3.12 Permeability 

In a given magnetic medium, the flux density B is related to the magnetising force 
H which produces it by the relationship 

B=p.H (3.11) 

where 1J. is the absolute permeability of the material, and has the dimensions of 
henrys/metre (H/m). The permeability of free space or magnetic space constant is 
given a special symbol, IJ.o, and has the value 

/J.o = 47r X 10-7 H/m (3.12) 

If a ferromagnetic core is inserted inside the former of an air-cored coil the flux 
density is intensified, the factor by which it is increased is given by the relative 
permeability IJ.r of the material, where 

flux density with the ferromagnetic core 
/J.r = flux density without the ferromagnetic core 

=--=-
IJ.oH IJ.o 

Inserting equation 3.13 into equation 3.11 yields 

B=IJ.riJ.oH 

3.13 Classification of Magnetic Materials 

(3.13) 

(3.14) 

Materials can broadly be classified as being either magnetic or non-magnetic, but 
between the two extremes lie a number of groups of magnetic materials. The 
following is a summary of the more important groups. 
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Ferromagnetic materials 

The permeability of these elements is considerably greater than that of a vacuum. 
These materials include iron, steel, nickel and cobalt as well as a number of alloys, 
for example, nickel-iron and cobalt-iron. The relative permeabilities of these 
elements vary with magnetising force, and have a peak in their relative· 
permeability-magnetising-force characteristics. 

Paramagnetic materials 

These materials have a relative permeability whose value is slightly greater than 
unity, and become weakly magnetised in the direction of the magnetising field. 
Included in this group are aluminium, chromium, manganese and platinum. 

Diamagnetic materials 

The relative permeability of these materials is less than unity, and they become 
weakly magnetised but in the opposite direction to that of the magnetising field. 
Diamagnetic materials include antimony, bismuth, copper, gold, silver and zinc. To 
illustrate the value of relative permeability involved, in the case of bismuth it is 
0.99982. 

Ferrites 

These are semiconductor materials that have similar ferromagnetic properties to 
iron but, like many semiconductors, have a high resistivity. The latter property 
leads to a very low power loss at high frequencies. 

3.14 Magnetisation Curves of Ferromagnetic Materials 

The application of a steadily increasing magnetising force to a piece of 
ferromagnetic material which was originally demagnetised causes the flux density to 
increase in the manner shown in figure 3.12. This type of curve is sometimes 
referred to as a B-H curve. 

Between the origin 0 and point K the flux density increases rapidly, but 
beyond this point the slope of the curve decreases. Point K indicates the onset of 
the knee of the characteristic. Increasing the magnetising force further results in an 
increase in flux density but at a progressively lower rate until, at S, the increase in 
flux with H is only equal to the same increase that would result if the coil were 
air-cored. When this occurs, the core material is said to be magnetically saturated. 

The shape of the curve in figure 3.12 can be explained in terms of the physics of 
ferromagnetic materials as follows. The magnetic properties of ferromagnetic 
materials depend on the magnetic field associated with electrons in motion. The 
spinning motion of electrons produces a tiny permanent-magnet effect, and two 
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Figure 3.12 Magnetisation curve of a ferromagnetic material 

electrons spinning in opposite directions form a non-magnetic pair. In the 
molecular structure of ferromagnetic materials, atoms with like spins are grouped 
together to form what are called domains or dipole magnets. In demagnetised 
materials the domains point in different directions and the net magnetic flux 
density is zero. Under the influence of an externally produced magnetic field, the 
domains line up so that the magnetic flux density increases very rapidly. For values 
of magnetising force in figure 3.12 greater than HK, the number of domains 
remaining to be lined up with the field is reduced until, at point S all the domains 
are in line with the magnetising field. 

When the magnetising force is reduced to zero, some domains return to their 
original directions and some do not. As a result, the material retains some of its 
magnetism and is a measure of the retentivity or residual magnetism of the material. 
This is indicated in figure 3.13 by the remanent flux, Br. In materials used for 
permanent magnets, a high retentivity is desirable. The residual flux is reduced to 
zero by applying a reverse magnetising force, the coercive force He in figure 3.13. 

If the reverse magnetising force is increased further, the material becomes 
saturated once more at point X in figure 3.13, but with the opposite magnetic 
polarity. The complete loop in figure 3.13 is known as a hysteresis loop or B-H 
loop. 

It can be shown that the area of the B-H loop has dimensions of energy per unit 
volume, that is, J/m3 , so that every time the magnetising force suffers a complete 
cycle, that is, two reversals, power is consumed by the material. This power loss is 
known as the hysteresis loss, Ph, and is related to the frequency of reversals,[, and 
also to the maximum flux density Bmax as follows 

hysteresis loss ex: f(Bmax)n 

where n is a number whose value lies between 1.6 and 2.2, and is typically 1. 7. 



Electromagnetism 79 

8 

H 

Figure 3.13 B-H curve for ferromagnetic material 

3.15 Magnetic Circuits 

The relationship between the m.m.f., F, applied to a magnetic circuit and the flux 
cJ> in the circuit is given by the relationship 

F= cJJS At (3.15) 

where S is the reluctance of the circuit, and has dimensions of At/Wb or A/Wb. 
Hence 

S = Ffq> At/Wb 

Now 

F=/R 

and 

</> = Ba = JlrJlo Ha· 

where I is the length of the magnetic circuit and a is its area. Therefore 

HI 
S= =--

JlrJlo Ha JlrJlo a 
A/Wb (3.16) 

In some cases it is convenient to use a quantity known as the permeance, symbol A, 
of the magnetic circuit where 

A= 1/S Wb/A or Wb/At (3.17) 

Equation 3.15 is analogous to the expression E = IR for the electrical circuit. Also 
equation 3.16 is generally similar toR= p/fa for the electrical circuit. A comparison 
between electrical and magnetic circuit quantities is given in table 3.1. 
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Table 3.1 

Magnetic circuit Electric circuit 

Quantity Unit Quantity Unit 

m.m.f. F At e.m.f. E v 
magnetising force H At/m electric force E V/m 
magnetic flux cp Wb electric current I A 
reluctance s A/Wb resistance R n 
permeance A Wb/A conductance G s 

F=4JS E=IR 

I 
S=--

P.rP.oa 

l 
R=p-

a 

Example3.7 

A mild-steel ring has a mean circumference of 0.25 m and cross-sectional area of 
0.001 m2 • If the flux in the core is 1.5 mWb, and the relative permeability of the 
ring at the operating flux density is 625, calculate the current required in a coil of 
1000 turns wound uniformly on the core to produce this flux. 

Solution 

S = 1/(p.rP.o a)= 0.25/(625 x 411' x 10-7 x 0.001) 

= 0.3183 X 106 A/Wb 

m.m.f. F= cps= 1.5 x 10-3 x 0.3183 x 106 = 0.478 x 103 At 

hence 

I=F/N= 0.478 X 103 /1000 = 0.478 A 

3.16 Magnetic Circuits in Series and in Parallel 

The analogy between electrical and magnetic circuits is sufficiently close to allow us 
to use techniques in the solution of magnetic circuits that are similar to those used 
in electrical circuits. Consider the magnetic circuit in figure 3.14a, which consists of 
an iron path of length / 1 and an air gap oflength /2 in series with one another. The 
'equivalent' circuit is shown in figure 3.14b, in which 

F=NI 
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Figure 3.14 A series magnetic circuit 

S2 = /2 l11oa 

<P = F/(S 1 + S2) 
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Figure 3.15a illustrates a series-parallel magnetic circuit. The values of the circuit 
elements in the equivalent circuit, figure 3 .15b, are calculated as follows 

F=Nl 

S 1 = /1 / llr 1 Jlo a 1 

s2 = [2 111r211oa2 

s3 = 1311lr311oa3 

s4 =l41/loa3 

Ss = lslllrslloas 

where a 1 , a2 , and a 3 are the areas of the left-hand, centre and right-hand limbs, 
respectively, of the circuit and Jlrl, Jlr2• etc. are the relative permeabilities of the 
iron sections at their working flux densities. Applying the rules of series-parallel 
electric circuits to calculate the equivalent reluctance, S, of the circuit in 
figure 3.15b yields 

and 

cp = F/S 

also 
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Figure 3.15 A series-parallel magnetic circuit 

and 

Example3.8 

A magnetic circuit of the type in figure 3.14a has an iron part with the B-H curve 
shown in figure 3.16. If the length of -the iron part is SO em and the length of the 
air gap is I mm, calculate the value of current required in a coil of 300 turns wound 
uniformly around the iron core to produce a flux of 800 J.LWb in the core. The 
cross-sectional area of the magnetic circuit is 5 cm2 • 

Solution 

Flux density= B = cP/A = 800 X w-6 /5 X 10-4 = 1.6 T 

From figure 3.16 we note that to produce this flux density in the iron circuit, a 
magnetising force of 3500 At/m is required. The number of ampere turns required 
to produce a flux density of 1.6 T in the iron circuit of length 50 em is 

Fl = 3500 X 0.5 = 1750 At 

The number of ampere turns F 2 required to produce the flux in the air gap is 

F2 = cP S2 = cP lz/J.LoA 

= 800 X 10-6 X 1 X 10-3 /(47r X 10-7 X 5 X 10-4 ) 

= 1274 At 
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Figure 3.16 

The total ampere-turn requirement for the complete circuit is 

F=F1 +F2 = 1750+ 1274=3024At 

Hence the current I that must flow in the coil is 

I= F/N = 3024/300 = 10.08 A 

3.17 Self Inductance, L 

83 

It was shown in section 3.2 that an e.m.f. is induced in a coil if the flux produced 
by that coil changes, that is, the e.m.f. is induced when the current in the coil 
changes. The unit of self inductance, the henry (symbol H), is defined as follows. 

A circuit has a self inductance of one henry if an e.m.f. of one volt is induced in 
the circuit when the current in the circuit changes at the rate of one ampere per 
second. Hence 

self-induced e.m.f. = e = L x rate of change of current 

di 
=L- volts 

dt 
(3.18) 
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It was also shown in section 3.3 that the induced e.m.f. is given by the equation 

Therefore 

or 

e = d(NcJ>)/dt 

di d(N<P) 
L-=--

dt dt 

d(N <P) change in magnetic flux linkages 
L=--= H 

di change in current 
(3.19) 

For a magnetic circuit with constant reluctance, the flux is proportional to the 
exciting current, hence if a flux cJ> is produced by current I, then 

Now 

or 

L =N!J>/I 

NI 
</> = BA = JJ}{A = f.1 - A 

l 

(3.20) 

Hence the inductance of a coil is proportional to N 2 , and doubling the number of 
turns on the coil quadruples its inductance. 

Example 3.9 

Calculate the average value of self induced e.m.f. in a coil of 0.5 H when the current 
flowing through it is increased from 0.1 A to 2.1 A in 50 ms. 

Solution 

di = 2.1 - 0.1 = 2 A 

dt =50 ms 

Hence the average value of the self-induced e.m.f. is 

E=L di/dt = o.s x 2/(So x w-3 ) = 20 v 

Example 3.10 

A coil of 500 turns has an inductance of 15 mH. Determine (i) the flux produced in 
the core when a current of 2 A flows in the coil and (ii) the value of the 
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self-induced e.m.f. in the coil when the current is changed from +2 A to -2 A in 
10 ms. 

Solution 

(i) From equation 3.19 

change in flux linkages N( l/> 2 - l/>1 ) L = --"'-----=-
change in current I2 - I1 

where l/> 1 and I 1 are the initial values of magnetic flux and current, respectively, 
and cP 2 and I 2 are the final values. If the initial values of flux and current are zero, 
then 

Therefore 

cP2 = LI2/N = 15 x w-3 x 2/500 Wb = 60 pWb 

(ii) Since the current changes from +2 to -2 A in a period of 10 ms, then 

di = I2- II = -2- (+2) = -4 A 

Therefore 

di/dt = -4/10 X 10-3 = -400 A/s 

From equation 3.18 

induced e.m.f. = L di/ dt = 15 X 1 o-3 X ( -400) = - 6 v 

3.18 Mutual Inductance, M 

Two coils are said to be mutually coupled when a change in the magnetic flux 
produced by one coil causes an e.m.f. to be induced in the other. For this to occur, 
the flux produced by either coil must link or cut the windings of the other coil. 
This is the basis of the operation of electrical transformers, and the coils may either 
be closely coupled when the majority of the flux links with both coils, or they may 
be loosely coupled when only a small proportion of the flux produced links with 
both coils. The degree of coupling between the coils is indicated by the value of the 
coupling coefficient, symbol k, which has a maximum value of unity for coils that 
are closely coupled, and has zero value when the coils have no magnetic coupling 
between them. 

Let us consider the mutually coupled coils in figure 3.17. When switch S is 
closed, the current in the primary winding (coil A) flows in the direction shown, 
and while the current is increasing from zero to its final value, the magnetic flux 
produced by the coil also increases. As shown in equation 3.2, an e.m.f. e2 is 
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X 

Figure 3.17 Mutual inductance between coils 

induced in the secondary winding (coil B) during the time that flux t:P 1 is 
changing. The equation relating the induced e.m.f. and the primary current is 
similar to that for self inductance (see equation 3.18), and is given below. 
Secondary induced e.m.f. = e2 

=mutual inductance x rate of change of primary current 

. dil 
=M­

dt 
(3.21) 

Also, since the induced e.m.f. is given by the rate of change of flux linkages, then 

Equating equations 3.21 and 3.22 yields 

or 

di1 d<P1 
M-=N2 --

dt dt 

M=N d4>1 
2 d" II 

(3.22) 

(3.23) 

The polarity of the mutually induced e.m.f. in the secondary winding in figure 3.17 
can be deduced from a consideration of Lenz's law. This states that the induced 
e.m.f. acts in a direction which would cause a current to circulate so that the flux it 
produces would oppose the flux change producing the e.m.f. In the case considered, 
the flux enters the left-hand end of coil B and is increasing in magnitude as the 
primary current increases. If the secondary induced e.m.f. were to cause a current 
to circulate, it would produce a magnetic flux opposing the flux entering coil B. 



Electromagnetism 87 

Applying the rules described earlier, we see that the current through coil B from 
terminal Y to terminal X, that is, the current in the external circuit flows from X 
toY. Hence, terminal X is positive with respect to terminal Y. 

Example 3.11 

The mutual inductance between two coils is 0.2 H. If the current in one winding 
increases from 100 rnA to 600 rnA in 5 ms, (a) determine the average value of 
e.m.f. induced in the secondary winding during this period of time, and (b) if the 
secondary is wound with 500 turns, calculate the change of flux linking with the 
secondary winding. 

Solution 

(a) di = 600- 100 = 500 rnA 

dt= 5 ms 

Average value of induced e.m.f. = M di/dt 

(b) From equation 3.23 

hence 

= 0.2 X 500 X 10-3 /(5 X 10-3 ) 

=20V 

flux change= 0.2 X 500 X 10-3 /500 = 0.2 X 10-3 Wb = 0.2 mWb 

3.19 The Dot Notation 

The dot notation is a convenient method of indicating the relative polarities of 
mutually induced e.m.f.s in magnetically coupled coils. In this notation a dot is 
placed arbitrarily at one end of the primary winding, and a second dot is then 
placed at the end of the magnetically coupled coil which has the same 
instantaneous polarity as the 'dotted' end of the primary winding. Referring to 
figure 3.17, if a dot is placed at the right-hand" end of coil A, then we must also 
place a dot at the right-hand end of coil B since this has the same instantaneous 
polarity as the dotted end of coil A. Thus the coils in figure 3.17 can be represented 
by the circuit in figure 3.18a. The effect of reversing the direction of one of the 
windings is illustrated in figure 3.18b. Here the polarity of the induced e.m.f. is 
reversed, and the left-hand end of the secondary coil is instantaneously positive 
when the right-hand end of the primary is connected to the positive pole of the 
supply. 
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Figure 3.18 The dot notation 

3.20 Series-connected Magnetically Coupled Coils 

When two coils wound on the same former are electrically connected together, then 
the flux that links the coils will modify the value of the induced e.m.f. in the coils. 
In the absence of mutual coupling between the two coils of inductance L 1 and L 2 , 

their inductance when they are connected in series is L 1 + L 2 ; the effect of mutual 
coupling is to alter the net value of the inductance. 

Let us consider the arrangement in figure 3.19a in which the fluxes produced 
by the coils act in the same direction (the series-aiding connection). Each coil will 
have both self- and mutually induced e.m.f.s in them, and for coil L 1 these are 

and for coil L 2 are 

Therefore 

self-induced e.m .f. due 
to the current in L 1 

di 
=L~­

dt 

mutually induced e.m.f. due = M ~ 
to the current in L 2 dt 

self-induced e.m.f. due 
to the current in L 2 

di =L -
2 dt 

mutually induced e.m.f. due = M di 
to the current in L 1 dt 

di 
total induced e.m.f. = (L 1 + L 2 +2M) dt 

(3.24) 

(3.25) 

(3.26) 
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Figure 3.19 Coils connected in series so that the flux is (a) aiding and 
(b) opposing 

If the equivalent inductance of the two coils in the series-aiding connection is L, 
then the induced e.m.f. in the circuit is 

di 
total induced e.m.f. = L -

dt 
(3.27) 

Comparing equations 3.26 and 3.27, we see that the equivalent inductance of two 
series-aiding coils is 

(3.28) 

In the case of two coils connection in series opposition, figure 3.19b, the mutual 
flux induces an e.m.f. in opposition to the self-induced e.m.f. in the coils, and the 
polarities associated with the mutually induced e.m.f.s (equations 3.24 and 3.25) 
are negative. Hence the total induced e.m.f. in the circuit is 

di 
(Lt + L2 -2M)- volts 

dt 

to give an equivalent for series-opposing coils of 

3.21 Coupling Coefficient 

(3.29) 

Suppose that coil L 1 in figure 3.19 produces flux 41 1 , and that a proportion ktP 1 

links with coil L 2 , where k is a constant whose value lies in the range between zero 
and unity. This coefficient is known as the coupling coefficient. Also, if an amount 
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of flux kC/12 links with coil L 1 then, from equation 3.23 

(3.30) 

and 

(3.31) 

where I 1 and I 2 are the currents in coils L 1 and L 2 , respectively. Multiplying 
equation 3.30 by equation 3.31 gives 

2 N1k¢2 N2k¢1 2 N1(P1 N2¢2 
M =--x--=k --x--

I2 I1 I1 I2 

NowL 1 =N1¢J/I1 andL2 =N2¢di2,hence 

M 2 = k 2 L 1L 2 

so that the value of the coupling coefficient k is 

M 
k=--:---

y(LIL2) 
(3.32) 

Example 3.12 

Two coils are wound on a common magnetic circuit and have inductances of 1 H 

and 0.64 H. If the coupling coefficient is 0.5, determine (i) the mutual inductance 
between the coils and (ii) the inductance of the circuit if they are conected in 
(a) series-aiding, (b) series-opposing. If the current in the circtui in cases (a) and 
(b) above changes at the rate of 100 A/s, determine the induced e.m.f. in each case. 

Solution 

(i) M = ky(LIL2) = 0.5 X y(1 X 0.64) = 0.4 H 

(ii) (a) For series-aiding coils 

L =L 1 +L2 +2M 
= 1 + 0.64 + (2 X 0.4) = 2.44 H 

(b) For series-opposing coils 

L =L1 + L2- 2M 
= 1 + 0.64- (2 X 0.4) = 0.84 H 

When the current changes at the rate of 100 A/s, the induced e.m.f. for 
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(a) series-aiding is 

Ldi/dt = 2.44 X 100 = 244 v 
(b) series-opposing is 

L di/dt = 0.84 X 100 = 84 v 

3.22 Energy Stored in a Magnetic Field 

If the current flowing in an inductive circuit of inductance L increases at a uniform 
rate from zero to 1 amperes in a time oft seconds, then the average circuit current 
is I/2 amperes, and the average value of induced e.m.f. is L x rate of change of 
current or LI/t volts. Hence the average energy consumed by the inductive circuit is 

LI I 1 
W =Eft =- x - x t = - L/2 joules 

t 2 2 
(3.33) 

In the general case, the current rises at a non-linear rate and the instantaneous value 
of induced e.m.f. is e = L di/dt. The energy absorbed in time interval dt is 

di 
w = - x i x dt = Li di joules 

dt 

The total amount of energy consumed during the time that the current changes 
from zero to I is 

W = Li di = L - i2 = - L/2 J/ [' ]/ 1 
0 2 0 2 

joules 

Example 3.13 

A coil of resistance 20 n is connected to a 40 V d.c. supply. Calculate the steady 
value of current in the circuit. If the inductance of the coil is 5 H, determine the 
energy stored in the magnetic circuit. 

Solution 

During the time that the energy is being stored in the magnetic field, the current 
increases from zero to its final value. The rate of rise of current is determined by 
several factors including the supply voltage and the inductance and resistance of the 
coil (see also chapter 10). The final value of current is reached when the 
self-induced e.m.f. has fallen to zero, that is, when di/dt = 0, and the final current is 
limited by the resistance of the circuit. That is 

final value of current= I= E/R = 40/20 = 2 A 
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and the energy stored in the magnetic field is 

1 1 
W=-LI 2 =-x 5 x 22 = lOJ 

2 2 

Summary of essential formulae and data 

EMF. induced in a coil: E=Ndc:P/dt volts 

F1ux density: B = r]JjA tesla 

EMF. induced in a conductor: E = Blv volts 

total magnetic flux 
leakage coefficient= ,_1 • fl 

usefUl magnet1c ux 
Magnetic fringing: 

Force on a conductor: F = BIZ newtons 

Magnetomotive force: F =IN ampere turns 

Magnetising force: H = F/1 =IN/I ampere turns/metre 

Absolute permeability: 1J. = B/H = /J.r/J.o henrys/metre 
permeability of free space= /J.o = 47T x 10-7 henrys/metre 

Hysteresis loss: Ph ex fBmaxn where n lies between about 1.6 and 2.2 and is 
typically 1. 7 

Reluctance: S = F/ c:P = 1/ /J.r/J.o A ampere turns/Wb 

Permeance: A= 1/S webers/ampere turn 

EMF. of self inductance: e = L di/dt volts 

Inductance: L = N d<P/di = !J.N2 A/1 henry 

EMF. ofmutualinductance: e2 =Mdiddt=N2 d<P 1 /dt volts 

Mutua/inductance: M = Nz d<P1 /di1 

Coupling coefficient: k = M/../(L 1 L 2 ) 

Inductance of two serie:raiding coils: L = L 1 + L 2 + 2M 

Inductance of two series-opposing coils: L = L 1 + L 2 - 2M 

Energy stored in a magnetic field: W = .!. L/2 joules 
2 



4 Electrostatics 

4.1 Insulating Materials and Electric Charge 

The application of an electrical potential between two metal plates or electrodes 
causes an electric field to be established in the insulation or dielectric between the 
electrodes, in the manner of figure 4.1a. The electric field is represented by 
imaginary lines, each of which shows the path that would be traced out by the 
movement of a free electric charge. The direction of the electric field at any point is 
given by the direction of the force experienced by a unit positive charge placed at 
that point. 

The two electrodes together with the dielectric form a capacitor, the circuit 
symbols for both [!Xed capacitors and variable capacitors are shown in figure 4.1 b. 
The capacitance of a variable capacitor can be adjusted by altering the physical 
parameters of the capacitor. The capacitance, symbol C, of a capacitor is its ability 
to store an electrical charge. The mechanism of charge storage depends on the 
chemical structure of the dielectric. The molecular structure of dielectric materials 
used in commercial capacitors falls into one of two categories, namely polar 
molecule (or dipole) and non-polar molecule. 

In materials with the polar molecular structure, the centre of gravity of the 
electrons does not coincide with that of the atomic nuclei. Consequently the polar 
molecule may be regarded as the electrostatic equivalent of a bar magnet. When the 
capacitor is uncharged, the axes of the molecules in the dielectric assume random 
directions and the net electrical potential between opposite faces of the material is 
zero. The application of an electrical field to the dielectric causes the molecules to 
pivot about their centre of mass (that is, about the positively charged atomic 
nuclei), the 'lighter end' being attracted towards the positive electrode; this causes 
the dielectric to be in a state of electric strain. When the voltage applied to the 
dielectric is removed the molecules remain strained, and in this way energy is stored 
in the capacitor. 

The orbits of electrons in non-polar molecules are capable of elastic strain, and 
when non-polar materials are placed in an electric field they become polar and are 
capable of storing charge in the same way as polar materials. 

The majority of insulating materials are of the polar type and include cellulose, 
phenol-formaldehyde resins and PVC. Non-polar types include polystyrene, 
polythene and transformer oil. 
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Figure 4.1 (a) The electric field produced by a capacitor and (b) circuit symbols 
used to represent the capacitor 

The electric field intensity (also described as the electric stress, the electric field 
strength, or the potential gradient), symbol E, experienced by the dielectric is given 
by 

E = V/d volts per metre (4.1) 

where V and d are defined in figure 4.1a. The maximum electric stress a material 
can sustain without breaking down is known as its electric strength, and the voltage 
which has to be applied to cause electrical breakdown is known as the breakdown 
voltage. 

4.2 The Relationship Between Charge, Capacitance and Applied Voltage 

Experiments show that the electrical charge Q stored by a capacitor is given by the 
relationship 

Q = CV coulombs (4.2) 

where C is the capacitance in farads, symbol F, and V is the voltage between the 
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plates of the capacitor. The charge in coulombs represents the displacement in the 
external electrical circuit of a given number of electrons, and is equal to the 
quantity of electricity that has passed through the circuits. 

The farad is an inconveniently large unit, and subunits used in practice are the 
microfared (j.IF), the nanofared (nF) and the picofared (pF), where 

l11F = 10-6 F 

I nF = 10-9 F 

I pF= 10-12 F 

The farad is defined from equation 4.2 as follows. 
The farad is the capacitance of a capacitor which stores a charge of one coulomb 

when a p.d. of one volt appears between its electrodes. 

Example4.1 

A potential of 400 V is maintained between the electrodes of a capacitor of 0.2 nF 
capacitance. Calculate (a) the stored charge, and (b) the potential gradient in the 
dielectric given that its thickness is 2 mm. 

Solution 

(a) 

(b) 

Q = CV = 0.2 X 10-9 X 400 = 80 X 10-9 C 

= 80 nC = 0.08 11C 

E = V/d = 400/2 x 10-3 = 200 x 103 V/m 

= 200kV/m 

4.3 Capacitors in Parallel 

The parallel-connected capacitors in figure 4.2a both support voltage V between 
their terminals. The charge stored by C 1 is 

Ql = c1 v 
and the charge stored by c2 is 

Q2 = c2 v 
If the parallel combination were replaced by a single capacitor C, as shown in 
figure 4.2b, its value being such that its stored charge is Q 1 + Q2 , then 

CV=Q1 +Q2 =C1V+C2V= V(C1 +C2) 
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(a) (b) 

Figure 4.2 Parallel-connected capacitors 

or 

(4.3) 

Hence, the effective capacitance of two capacitors in parallel is the sum of their 
respective values. This argument can be extended to deal with n capacitors in 
parallel, to give an equivalent capacitance of 

(4.4) 

Note The effective capacitance of parallel-connected capacitors is always greater 
than the largest individual value of capacitance. 

Example 4.2 

Calculate the equivalent capacitance of three parallel-connected capacitors of values 
0.5 11F, 2000 pF and 200 nF. 

Solution 

First the values need to be changed to equivalent unit sizes. 

C1 = 500 nF C2 = 2 nF C3 = 200 nF 

C= C1 + C2 + C3 = 500 + 2 + 200 = 702 nF or 0.702/lF 

4.4 Series-connected Capacitors 

When switch S is closed in figure 4.3a the charging current flows through both 
capacitors for the same length of time. Since Q =It, the charge stored by each 
capacitor is Q coulombs. If V1 and V2 are the p.d.s across C1 and C2 , respectively, 
then 
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Figure 4.3 Series-connected capacitors 

or 

If we replace the two series-connected capacitors in figure 4.3a by the single 
capacitor in figure 4.3b such that it stores the same charge Q coulombs when V volts 
are applied to it, then 

Q=CV or V=Q/C 

Comparing the two circuits we see that 

or 

therefore 

v= vl + V2 

1 1 1 
-=-+­c c1 c2 

That is, the reciprocal of the equivalent capacitance of two parallel-connected 
capacitors is the sum of the reciprocals of their respective capacitances. 
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Rearranging yields 

c= c1c2 
c1 +C2 

(4.5) 

In the general case of n capacitors connected in series, the reciprocal of the 
equivalent capacitance is 

1 1 1 1 
-=-+-+ +­c C1 C2 . . . Cn 

(4.6) 

Note The equivalent capacitance of series-connected capacitors is always less than 
the value of the smallest capacitance in the circuit. 

Example 4.3 

Calculate the equivalent capacitance of three series-connected capacitors of values 
0.5 ~o~F, 2000 pF and 200 nF. 

Solution 

or 

c1 = o.5~o~F c2 = o.oo2~o~F c3 = o.2~o~F 

1 1 1 1 
- =-+ --+- = 2 + 5oo + 5 = 507 (~o~Fr 1 
c 0.5 0.002 0.2 

C= 1/507 = 0.00197 ~o~F or 1970 pF 

4.5 Voltage Distribution Between Series-connected Capacitors 

From the work in section 4.4 on series circuits, the same charge is stored by each 
capacitor. For the circuits in figures 4.3a and b 

therefore 

or 

(4.7) 
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It may also be shown that 

c1 
V2 =-- v 

c1 +C2 
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(4.8) 

In the general case of n capacitors connected in series, the voltage Vg across the 
gth capacitor is 

Vg = CV/Cg (4.9) 

where C is the equivalent capacitance of the series circuit, and Cg is the capacitance 
of the gth capacitor. 

The above equations have practical relevance in the calculation of the static 
voltage distribution across insulator strings and other devices which have self­
capacitance, for example, semiconductor devices such as thyristors and triacs in 
their non-conducting states. 

Example 4.4 

Capacitors of 1, 10 and 100 J..LF are connected in series to a 222 V d.c. supply. 
Calculate the voltage across each capacitor. 

Solution 

C1 = 1 J..LF, C2 = 10J..LF, C3 = 100J..LF 

C = 1/ - +- +- = 1/ - +-+- = 0.9 J..LF ( 1 1 1 ) (1 1 1 ) 
cl c2 c3 1 10 100 

From equation 4.9 

Vt = CV/Cl = 0.9 X 10-6 X 222/1 X 10-6 = 200 v 
V2 = cv;c2 = o.9 x 10-6 x 222110 x 10-6 = 20 v 
v3 = cv;c3 = 0.9 x 10-6 x 2221100 x 10-6 = 2 v 

Note From the above we see that the largest value of capacitance supports the 
smallest value of voltage and vice versa. 

4.6 Series-Parallel Capacitor Combinations 

The effective capacitance of the circuit in figure 4.4a is calculated by sub-dividing it 
into two sections, namely a series combination Cs and a parallel combination Cp, 
where 
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(a) 

C5 Cp 

o~~--ul------111-1 --o 

(b) 

Figure 4.4 A series-parallel combination of capacitors 

and 

Cp=C3 +C4 

The circuit is reduced to that in figure 4.4b whose effective capacitance Cis 

C = CsCp/(Cs + Cp) 

Example 4.5 

In a circuit similar to that in figure 4.4a, C1 = 0.01 !J.F, C2 = 0.1 !J.F, C3 = 0.2 !J.F, 
and C4 = 1 !J.F. Calculate the effective capacitance of the circuit. 

Solution 

and 

Cs = 0.01 x 0.1/(0.01 + 0.1) = 0.0091 /lF 

Cp = 0.2 + 1 = 1.2 /lF 

C= C8Cp/(Cs + Cp) = O.Q091 x 1.2/(0.0091 + 1.2) 

= 0.009 /lF 

4. 7 Electric Flux Density and Permittivity 

It was stated in section 4.1 that a free charge in an electric field experiences a force, 
and if allowed to move in the field would trace out a curve. This leads to the 
concept of lines of electric flux. 
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One line of electric flux is assumed to emanate from a positive charge of one 
coulomb, and to enter a negative charge of one coulomb. 

Hence, Q lines of electrostatic flux emanate from a charge of Q coulombs. If the 
flux passes through a dielectric of area A, then the electric flux density, symbol D, 
in the dielectric is 

D = QjA coulombs per metre2 (C/m2 ) (4.10) 

The relationship between the electric flux density D and the electric field intensity 
E (see section 4.1) in the dielectric is 

(4.11) 

where e is the absolute permittivity of the dielectric, and has dimensions of farads 
per metre (F /m). The permittivity of free space is given the special symbol e0 and 
has the value 8.85 X w-l 2 F/m. The permittivity of air is about 0.06 per cent 
greater than of free space and, for all practical purposes, the permittivities of free 
space and air can be taken to be equal to one another. 

When the space between the plates of a capacitor is filled with an insulating 
medium such as glass or mica then, for a given voltage between the plates, the 
electric flux density (and capacitance) is increased. The ratio of the increase when 
compared with the case when the dielectric is air is indicated by the relative 
permittivity, Er, of the material. The relative permittivity is simply a number and is 
therefore dimensionless. Typical values of Er are given in table 4.1. 

Table 4.1 

Material 

Air 
Bakelite 
Glass 
Mica 
Paper (dry) 
Rubber 

Relative permittivity 

1.0006 
4.5-5.5 
5-10 
3-7 
2-2.5 
2-3.5 

The absolute permittivity is related to the permittivity of free space as follows 

€ =Eo €r (4.12) 

4.8 Capacitance of a Parallel-plate Capacitor 

The simplest form of capacitor is the parallel-plate capacitor shown in figure 4.5, 
the plates of area A m2 being d metres apart. In the following we assume that all 
lines of electric flux pass directly from one plate to the other, and that we can 
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oreo=A 

Figure 4.5 Capacitance of a parallel-plate capacitor 

neglect the effects of electrostatic fringing. The electric field strength in the 
dielectric is 

E= V/d V/m 

and the electrostatic flux density in the dielectric is 

D= QjA C/m2 

where Q is the electric charge stored by the capacitor. Now, from equation 4.11 

But, since Q = CV, then 

or 

D Q d Q d 
e=-=-x-=-x-

E A V V A 

d 
e=Cx­

A 

eA EoErA 
C= -= --

d d 

(4.13) 

(4.14) 

In the case of a multiple-plate capacitor of the kind in figure 4.6, the five plates 
are separated by four dielectrics (since only one side of each of the outer plates 
forms part of the capacitor). In the general case of an n-plate capacitor there are 
(n - 1) dielectrics, and the effective area of an equivalent two-plate capacitor is 
(n - 1 )A, where A is the area of one of the plates in figure 4.6. The capacitance of 
the multi-plate capacitor is therefore 

(n -1)eo ErA 
C= farads 

d 
(4.15) 

Example4.6 

A parallel-plate capacitor consists of two metal plates each of area 500 cm2 

separated by a dielectric of thickness 1.5 mm whose relative permittivity is 5. When 
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dielectric 

Figure 4.6 A multiple-plate capacitor 

the voltage between the plates is 400 V, determine (a) the capacitance of the 
capacitor in pF, (b) the charge stored in pC, (c) the electric field intensity in kV/m, 
and (d) the electric flux density in pC/m2. 

Solution 

(a) C = Eo Er Ajd = 8.85 X 10-1 2 X 5 X 500 X (10-2 )2 /1.5 X 10-3 

= 147.5 X 10-11 F = 1.475 nF 

(b) Q=CV= 147.5x 10-11 x400C=0.59pC 

(c) E = V/d = 400/1.5 X 10-3 V/m = 266.7 kV/m 

(d) D=Q/A =0.59/500x(l0-2)2 pC/m2 = 11.8pC/m2 

4.9 Capacitors with Composite Dielectrics 

In several practical forms of insulator the dielectric is constructed from several 
different types of insulating material. One form of capacitor with a composite 
dielectric is shown in figure 4.7a, in which dielectrics X and Y are of different 
materials. For practical purposes we may regard the dielectrics as forming two 
series-connected capacitors, shown in figure 4.7b, whose effective capacitance Cis 

where 

c1 =Eo En A/d1 and c2 = EoEI2A/d2 

in which d 1, d2 and A are defined in figure 4.7a, and En and Er 2 are the relative 
permittivities of materials X and Y, respectively. From the work in section 4.5, the 
voltage across dielectric X is 

and the voltage V2 across dielectric Y is 
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area=A 

v 

(a) 

c1 c2 

----~·~·------~·~·----
(b) 

Figure 4.7 A capacitor with a composite dielectric 

The electric field strengths (or potential gradients) in the two materials are 

Dielectric X £ 1 = VI/d 1 = CV/C1d 1 

Dielectric Y £2 = Vdd2 = CV/C2d2 

Hence 

Applying the results of equation 4.14 to the above equation yields 

Thus if €r 1 = 1.5 and €r2 = 4.5, then £ 1 = 3£2 • 

4.10 Energy Stored in a Capacitor 

(4.16) 

When an uncharged capacitor is connected to an electrical supply it begins to store 
energy. During the time that it absorbs energy from the supply, it draws a current 
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known as the charging cu"ent. After a period of time has elapsed the capacitor 
becomes fully charged, and no further current is drawn from the supply {see also 
chapter 10). During the charging period, if the voltage between the plates of a 
capacitor of capacitance C farads is increased by dv volts in dt seconds, then the 
increase in stored charge dq is 

dq = i dt = C dv coulombs 

where i is the instantaneous value of charging current, hence 

i=Cdv/dt 

The power supplied during time dt is 

vi =v C dv/dt watts 

and the energy w supplied in dt is 

dv 
w = vi dt = vC- dt = vC dv joules 

dt 

The energy supplied to the capacitor when the p.d. is increased from zero volts to V 
volts is 

Jv I I 
W= vCdv=- C[v2 ]~ =-CV2 

0 2 2 
joules (4.17) 

Example4.7 

A capacitor of 100 J,LF has a p.d. of 10 V between its plates. Calculate the amount 
of energy stored by the capacitor. 

Solution 

1 1 
Energy stored= W = 2 CV2 = 2 X 100 X l(f6 X 102 = 0.005 J 

4.11 Summary of Electric, Electromagnetic and Electrostatic Quantities 

Analogous quantities in electric, electromagnetic and electrostatic circuits referred 
to in this and earlier chapters are collected together in table 4.2. 
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Table 4.2 

Electric Electromagnetic 

Current I Magnetic flux cp 
Voltage v m.m.f. F 
Resistance R Reluctance s 
Conductance G 
Current density Magnetic flux B 

density 
Potential gradient Magnetising force H 
Conductivity Permeability Jl 

Summary of essential formulae and data 

Electric field strength: E = V/d volts per metre 

Electric charge: Q = CV coulombs 

Capacitors in parallel: c = cl + c2 + . . . farads 

Electrostatic 

Electric flux 
Voltage 

Capacitance 
Electric flux 
density 
Electric field intensity 
Permittivity 

Capacitors in series: l/C = 1/C1 + 1/C2 +. . . (faradsr1 

Voltage distribution between two capacitors C1 and C2 in series: 
voltage across C1 =applied voltage x C2/(CJ + C2) volts 

Electric flux density: D = Q/A 

Absolute permittivity: € = D/E = €r€o farads per metre 
permittivity of free space= Eo = 1/{ 411' x 9 x 109 ) farads per metre 

= 8.85 x 10-12 F/m 

Q 
v 

c 
D 

E 
€ 

Capacitance of a multiple-plate parallel-plate capacitor: C = (n - 1) e.A/d farads 

Energy stored in a capacitor: 
1 

W = - CP joules 
2 

Cu"ent: i = C dvjdt amperes 



5 Alternating Voltage and 
Current 

5.1 Generating an Alternating E.M.F. 

Alternating voltage systems are almost universally used for the transmission of 
electrical power due to the ease not only with which the voltage can be generated, 
but also with which the magnitude of the supply voltage can be changed by 
transformer action (see also chapter 9). 

A simple method of generating an alternating e.m.f. is shown in figure 5.1, in 
which a permanent magnet is rotated inside a coil of wire. The e.m.f.s induced in 
conductors A and B are additive and, under the conditions in the figure (applying 
Fleming's right-hand rule), terminal A' is instantaneously negative with respect to 
terminal B'. A short time later when the magnet has turned through 180°, the 
induced e.m.f.s in the coil sides have both reversed and A' is positive with respect to 
B'. Thus the current in the external circuit connected to terminals A'B' pulsates or 
alternates. The alternating voltage may also be generated by rotating the coil inside 
a fixed magnetic field. Connections are made to the ends of the coil via rotating slip 
rings and brushes, shown in figure 5.2. The brushes in commercial machines are 
made of carbon. 

The waveform of the e.m.f. induced in the coil depends not only on the 
construction of the coil but also on the magnetic field distribution. The shape of 
the e.m.f. wave generated by figure 5.1 would be similar to the flat-topped wave in 
figure 5.3a. This waveform is not particularly suited for the purposes of electrical 
transmission, the most suitable being the sinusoidal wave in figure 5.3b. The time 
for one complete cycle of the waveform to be generated is known as its periodic 
time, T, and the number of complete cycles generated in one second is 

f= 1/T hertz (Hz) (5.1) 

Commonly used power-supply frequencies are 50 Hz and 60 Hz, having periodic 
times of 20 ms and 16.67 ms, respectively. 

The value of the generated e.m.f. varies between the extremes of +Em and -Em; 
in the case of the sine wave, figure 5.3b, the instantaneous value of e.m.f. e varies 
sinusoidally according to the relationship 

e=Em sinO (5.2) 
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Figure 5.1 Principle of the alternator 

where e is the angle through which the magnet in figure 5.1 has turned from the 
horizontal. 

5.2 The Average Value or Mean Value or an Alternating Waveform 

The average value of any signal during a given time interval is 

al area under graph 
average v ue = . . . 1 ume mterva 

When evaluating the average value of an alternating wave, it is usual to do so over 
one halfcycle of the wave for the following reason. If we consider the waveforms in 
figure 5.3a and b, in each case the area under the positive half-wave is equal to that 
under the negative half-wave; that is, the total area under a complete cycle is zero. 
Hence the average value of an alternating waveform taken over a complete cycle is 
zero. Since the area under either half-cycle is finite, then the average value is taken 
to be that of a half-cycle. 

brushes 

Figure 5.2 Slip-ring connections to a rotating loop of wire 



Alternating Voltage and Current 

"0 
Q) 

0 + 
a; 
c 
Q) 

"" 

+ 

1 cycle (periodic time= T)--- --1 
(a) 

~ radians 

(b) 

3 1T radians 
2 

Figure 5.3 Alternating voltage waveforms 
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The average value of an alternating waveform can be computed in the manner 
shown in figure 5.4. In this case we are dealing with a current waveform, and if the 
values of n equidistant mid-ordinates are i 1 , h, ... , in, then the average value of the 
waveform over one half-cycle is 

(5.3) 

In the case of figure 5.4, n = 6. The average value of a voltage waveform is 

calculated using the same principle. 

Example 5.1 

The waveform of a current has a triangular shape and has the following values 
measured during one half-cycle, both half-cycles being symmetrical. Calculate the 
average value of the waveform. 

Current (rnA) 

Time (ms) 

0 

0 

10 20 30 40 50 40 30 20 

10 20 30 40 50 60 70 80 

10 0 

90 100 
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Solution 

Since the waveform of current changes linearlyt between the intervals of time in 
the table, then the mid-ordinate values of current are 5,15, 25, 35, 45, 45, 35, 25, 
15, and 5 rnA, respectively. Hence 

5 + 15 + 25 + 35 + 45 + 45 + 35 + 25 + 15 + 5 
I =----------------av 10 

=25 rnA 

5.3 Root-mean-square (R.M.S.) Value of an Alternating Waveform 

The effective value of current in an a.c. circuit is computed in,terms of its heating 
effect. Considering the waveform in figure 5 .4, the instantaneous heating effect of 
current i 1 when flowing through a resistor of valueR is itR, and that due to i2 is 
i~R, etc. Hence the average heating effect of the current waveform is 

it R + i~ R + ... + i~R 
n 
l 

If I is the effective value of alternating current that produces the same heating 
effect when flowing through R, then 

or 

·2R + ·2R + + ·2R 2 !1 l2 . • • ln I R =-------'-'-
n 

)(
·2 ·2 ·2) I= !1 + !2 : • • • + ln 

= square root of the mean of the sum of the squares of the current 

=root-mean-square (r.m.s.) value of the current 

The r.m.s. value of a voltage waveform is calculated using the above technique. 

(5.4) 

The r.m.s. value can be computed either over a complete cycle or over half a 
cycle since, when the instantaneous values of current (or voltage) are multiplied by 
themselves the results are always positive. Consequently, both half cycles of the 
{current)2 waveform have positive values. 

Example5.2 

Calculate the r.m.s. value of the current for the waveform in example 5.1. 

tin most practical cases the waveform follows a smooth curve, and it is usually necessary to 
measure the mid-ordinates from the curve. 
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c: 
~~~~~~~~~~+-----------~--~ 
:I 
u 

Figure 5.4 Determination of the average value of an alternating waveform 

Solution 

The instantaneous values of i and i2 are as follows 

Time (ms) i(mA) i2 (mA)2 

5 and 95 5 25 
15 and 85 15 225 
25 and 75 25 625 
35 and 65 35 1225 
45 and 55 45 2025 
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The sum of the values of i 2 in the above table is 4125 rnA 2 , therefore the sum of 
the values of i2 over one half-cycle is 

2 X 4125 = 8250 mA2 

Hence 

r.m.s. value of current= I= vf(8250/10) = 28.72 rnA 

Note The above value differs from the true solution by about 0.5 per cent due to 
the fact that only ten mid-ordinates were used. The accuracy of calculation is 
improved by increasing the number of mid-ordinates (see also section 5.5). 

5.4 Form Factor and Peak Factor (Crest Factor) 

It is the case that in all alternating waves with the exception of a rectangular wave 
(see below), the r .m.s. value is greater than its average value. The form factor of the 
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wave, and also its peak factor or crest factor give an indication of the waveshape, 
the respective factors being defined below. 

r.m.s. value of wave I 
Form factor=-------­

average value of wave Iav 

Peak factor or peak value or maximum value I m 
= =-

crest factor r.m.s. value I 

(5.5) 

(5.6) 

In the case of a rectangular wave the average, r.m.s. and peak values are all equal to 
one another. 

Example5.3 

Calculate the form factor and the peak factor of the triangular waveform in 
examples 5.1 and 5.2. 

Solution 

Iav = 25 mA,/m =50 rnA, I= 28.72 rnA 
Form factor= I/Iav = 28.72/25 = 1.15 
Peak factor= Im/I= 50/28.72 = 1.74 

S.S Average and R.M.S. values of a Sinusoidal Waveform 

To determine the average value of any waveform, it is first necessary to calculate 
the area enclosed by one half-cycle. Mathematically this is done by integrating the 
equation of the wave which is, in effect, the area computed using an infinite 
number of mid-ordinates. In the case of a sine wave, the equation for the 
instantaneous current, i, is 

i=Imsin8 

where Im is the maximum value of current, and 8 is the angle in radians from the 
instant of zero current (see also figure 5.3b for a sinusoidal voltage waveform). The 
area enclosed by the positive half-cycle of the wave is 

11' J" J i d8 = I m sin 8 d8 = - I m [cos 8 1: = - I m [ -1 - 1] 
0 0 

= 2/ m ampere radians 

The average value of the current waveform taken over the half cycle is 

area under one half-cycle 
Iav = -------:----=--

1r (radians) 

= 2Im/1r = 0.637 Im (5.7) 
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From equation 5.4, the r.m.s. current I is computed from the equation 

2 total area under current2 -time graph 
I = ------------=:..-=--

2rr (radians) 

1~2rr 1~2rr = - i 2 dO = - I;;_. sin2 0 dO 
2rr o 2rr o 

= _B!_ f - (I - cos 20) dO = -.l!! 0 - - sin 20 I 2 2" 1 I2 [ 1 ] 2 1T 

2rr J o 2 4rr 2 o 

I2 
m 

2 

Hence 

I= Im/v2 = 0.707 Im 

Similarly, for voltage waveforms 

average value= Vav = 2V m/rr = 0.637 V m 

r.m.s. value = v = v m /v2 = 0. 707 v m 
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(5.8) 

(5.9) 

(5.10) 

Consequently the form factor and the peak factor for sinusoidal waveforms are 

Example 5.4 

form factor= I/Iav = 0.707 Im/0.637 Im = 1.11 

peak factor= Im/I = Im/0.707 Im = 1.414 

(5.11) 

(5.12) 

A sinusoidal voltage waveform of peak value 14.14 V is applied to a resistance of 
value 5 n. Calculate the r.m.s. value of voltage across the resistance, and the r.m.s. 
and peak values of circuit current. 

Solution 

From equation 5.10 

r.m.s. voltage= V = 0.707 V m = 0.707 x 14.14 = 10 V 
r.m.s. current= I= V/R = 10/5 = 2 A 

From equation 5.8 

I m = y21 = 1.414 x 2 = 2.828 A 

Note Im can also be calculated from 

Im = V m/R = 14.14/5 = 2.828 A 



114 Electrical Circuits and Systems 

5.6 Graphical Representation of Alternating Quantities 

If a line oflength OA, see figure 5.5, rotates about point 0 at a constant velocity of 
w radians per second in an anticlockwise direction, then the projection of point A 
on the vertical axis traces out the sinew<:•:•:! shown. The counterclockwise movement 
is a convenient direction of rotation, and is used throughout the book. The length 
of OA is equal to the maximum value of current. At the instant of time when the 
line is in position OA, the instantaneous value of current i 1 is given by the 
expression 

i1 = Im sin IJ 1 

Some time later when the line has rotated to position OA', the instantaneous value 
of circuit current is 

i2 =Im siniJ 2 

At the completion of each revolution the line passes through zero and a new cycle 
is commenced. Since the line rotates through 21r radians during each revolution or 
cycle of events then, if the supply frequency is f Hz the angular frequency, w, is 

w = 21T[ rad/s 

or 

[= w/21T Hz 

Also, since 

(} = angular velocity x time = wt radians 

then the expression for instantaneous current is 

/ 
/ 

/ 

/ 
/ 

i=Im siniJ =Im sinwt=Im sin21T[t 

direction of rotation 
w rad/s 

/ 
/ 

I \ 
I I 

/ I 

1 e, \ I --------,-----
' I 
I / 
\ I 

---------------------1--------------------

Figure 5.5 Graphical representation of an alternating waveform 

(5.13) 

(5.14) 

(5.15) 
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S.7 Representation of Phase Difference 

In electrical engineering we are concerned with circuits in which quantities (both 
voltage and current) may differ not only in magnitude, but may also have a 
difference of phase angle between them. Two such waveforms are illustrated in 
figure 5.6. In the figure, current i 1 has zero value when OA lies on the horizontal 
axis as shown; at the same instant of time current i 2 has its maximum negative 
value. The angular difference, cp , between lines OA and OB which trace out the 
sinewaves i 1 and i2 , is known as the phase difference between the waveforms. In 
the case shown it is 90° or n/2 radians. 

As the lines OA and OB rotate in an anticlockwise direction, so i2 passes through 
zero after i 1 has passed through zero. To indicate this fact we say that i2 lags 
behind i 1 by angle cJ> • Alternatively, if we use i 2 as the reference waveform, we may 
say that i 1 leads i 2 by angle cJ> . In figure 5 .6, the expression describing i 1 is 

i1 =ftm sin8 

and the expression for i2 is 

(5.16) 

The negative sign associated with ¢ in equation 5.16 implies that i 2 lags behind the 
reference waveform. 

S.8 Phasor Diagrams 

As has been shown above, sinusoidal alternating quantities can be represented by 
rotating lines whose length is equal to the maximum value of the quantity 
concerned. Since we are more frequently concerned with r.m.s. values, it is 
convenient to represent the r .m.s. values of the quantities together with their phase 
relationships on diagrams similar to figure 5.6. Such diagrams are known as phasor 
diagrams, and lines drawn on them are known as phasors. 

A 

Figure 5.6 Representation of the phase difference between two sinusoidal 
waveforms 
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Figure 5.7 A phasor diagram 

In figure 5.7 the voltage Vis represented by a horizontal line; that is, the length 
of phasor Vis equal to the r.m.s. value of the circuit voltage and, since it is on the 
horizontal axis, the instantaneous value of the voltage waveform is zero when (J = 0 
(see also figure 5.5). Phasor / 1 represents the r.m.s. value of current / 1 , which leads 
V by angle C/> 1 • Also, phasor / 2 represents the r.m.s. value of / 2 , which lags behind 
V by angle C/>2 • 

5.9 Addition and Subtraction of Phasors 

The addition of two phasors OA and OBis illustrated in figure 5.8. The phasor sum 
is obtained graphically by completing the parallelogram OACB, the phasor sum 
being equal to the diagonal OC whose phase angle with respect to the horizontal is 

. The values of OC and ¢ are calculated from a knowledge of the horizontal and 
vertical components of OA and OB as follows. If ha and hb are the horizontal 
components of OA and OB, and Va and vb are the respective vertical components, 
then the horizontal component he of OC is 

he= ha + hb 

and the vertical component Ve of OC is 

By Pythagoras' theorem, the magnitude or modulus of line OC, written as I OC I, is 

(5.17) 

and the phase angle ¢ is 

(5.18) 

To subtract one phasor from another, it is necessary to add the 'negative' 
equivalent of the phasor to be subtracted. If, in figure 5.9 we subtract phasor B 
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Figure 5.8 Addition of two phasor quantities 
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Figure 5.9 Subtraction of two phasor quantities 
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from phasor A, as phase shift of 180° is given to OB in order to produce the 
equivalent of -OB. The latter phasor is then added to OA to give the phasor 
difference OD where 

OD = OA - OB = OA + ( -OB) 

The magnitude and phase angle of OD are calculated as follows 

I OD I =y(ha +va) 

C/J =tan-1 (vdfhd) 

Example5.5 

The following e.m.f.s. are induced in coils which are connected in series so that the 
e.m.f.s are additive. Determine the r.m.s. value of the resultant voltage wave and 
also its phase angle with respect to e1• 

Solution 

e1 = 20 sin wt e2 = 24 sin (wt + rr/6) 

e3 = 24 cos wt e4 = 16 sin (wt- 45°) 

The phasor of the resultant e.m.f. is determined graphically in figure 5.10. Readers 
will note that rr/6 = 30°, and that cos wt =sin (wt + 90°); hence e2 leads e 1 by 30° 
and e 3 leads e1 by 90u. E.M.F. e4 lags- behind e 1 by 45u. In the figure, e.m.f.s e1 

and e4 are added together first; the resultant is then added to e2 by completing 

.3 
------------------------------------~·-~+~+~+~ 

I 

Figure 5.10 
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another parallelogram to give e 1 + e2 + e4 • This phasor is added to e 3 to give the 
resultant voltage 

The magnitude and phase angle of e are calculated as follows 

horizontal component of e 1 = 20 cos 0° = 20 V 

horizontal component of e2 = 24 cos 30° = 24 x 0.866 = 20.78 V 

horizontal component of e3 = 24 cos 90° = 0 

horizontal component of e4 = 16 cos ( -45°) = 16 x 0. 707 = 11.31 V 

total horizontal component = eh = 20 + 20.78 + 0 + 11.31 = 52.09 

vertical component of e 1 = 20 sin 0° = 0 V 

vertical component of e2 = 24 sin 30° = 24 x 0.5 = 12 V 

vertical component of e3 = 24 sin 90° = 24 V 

vertical component of e4 = 16 sin ( -45°) = 16 x (-0.707) =- 11.31 V 

total vertical component = ev = 0 + 12 + 24 - 11.31 = 24.69 

From equation 5.17, the magnitude of e is 

I e I= v'(e~ +en= v'(52.092 + 24.69 2 ) =57 .65 v 
and from equation 5.18 

¢J = tan-1 (evfeh) = tan-1 (24.69/52.09) 

= 25°22' or 0.4428 rad (e leading e1 by 25°22') 

Hence 

e = 57.65 sin (wt + 25°22') = 57.65 sin (wt + 0.4428) 

The r.m.s. value of the resultant voltage is 

E = 0.707 X 57.65 = 40.76 

Example5.6 

The e.m.f. applied to two series-connected elements is given bye= 100 sin wt, and 
the voltage across one of the elements is e1 = 89.44 sin (wt + 0.4637). Determine the 
magnitude and phase angle of the voltage e2 across the second element. 

Solution 

For a series circuit e = e1 + e2 , or e2 = e- e1 , where e2 is the unknown value of 
voltage across the second element. The phase angle associated with e1 is 0.4637 rad, 
or 26°34', e 1 leading e by this angle. The phasors corresponding toe and e 1 are 
shown in figure 5.11. To subtract e 1 from e it is necessary to phase shift e 1 through 
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e2 =e -e, 

Figure 5.11 

180° as shown in the figure. The magnitude and phase angle of e2 are calculated 
below 

horizontal component of e = 100 cos 0° = 100 V 

horizontal component of -e1 = 89.44 cos (26°34'- 180°)t 

= 89.44 COS (-153°26') = 89.44 X(- COS 26°34') 

=- 89.44 X 0.8944 =- 80 V 

total horizontal component of e2 = 100 + ( -80) = 20 V 

vertical component of e = 100 sin 0° = 0 V 

vertical component of -e1 = 89.44 sin ( -153°26') 

= 89.44 (- sin 26° 34') = - 89.44 x 0.44 72 

=-40V 

total vertical component of e2 = 0 + ( -40) = - 40 V 

Hence 

and its r.m.s. value is 

£2 = 0.707 X 89.44 = 63.2 V 
Also 

¢> 2 = tan-1 ( -40/20) = tan- 1 ( -2) = - 63°26' 

That is, e2 lags behind e by 63°26'. 

5.10 Harmonics 

By far the most important waveform in electrical engineering is the sinusoidal 
waveform. There are, however, an infinite variety of waveforms which may be 

t26°34' + 180° would do equally well 
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regarded as being made up of a number of sine waves that differ in frequency, 
magnitude and phase shift from one another. 

If we take a number of sine waves whose frequencies are integral multiples of the 
lowest frequency, then we can build up or synthesise a complex waveform from the 
sine waves. The lowest frequency normally found in a complex waveform is 
described as the fundamental waveform, and the higher frequency waves are known 
as harmonic waveforms. If the fundamental frequency or first harmonic is f 1 , then 

etc., and the 

second harmonic frequency = f 2 = 2f1 

third harmonic frequency= f 3 = 3f1 

fourth harmonic frequency= f 4 = 4f1 

nth harmonic frequency = fn = nf1 

Certain types of electrical and electronic equipment operating at power-supply 
frequencies (50 or 60Hz) act as harmonic signal generators, and produce harmonics 
up to and including broadcast frequencies. Such devices include fluorescent lamps, 
thyristors and Zener diodes. 

To illustrate the process of waveform synthesis, let us add a third harmonic 
frequency to its fundamental frequency. This is illustrated in figure 5.12a for the 
case where the harmonic is in phase with the fundamental, that is, both waveforms 
pass through zero simultaneously, after which they increase in the same direction. 
To synthesise the resultant waveform, we add the values of the respective 
waveforms together. In figure 5.12a the instantaneous value of the resultant wave at 

resultant wave 

fundamental 

. t . 
th1 rd harmoniC 

harmonic wave 

(a) (b) 

Figure 5.12 Two waveforms that are generated by the addition of a fundamental 
frequency and its third harmonic. 
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time ta is A", and is obtained by adding together the instantaneous values A and A' 
of the fundamental and third harmonic waves, respectively. The phase relationship 
of the harmonics to the fundamental plays an important part in the shape of the 
resultant wave since, if the third harmonic lags behind the fundamental by 90° (see 
figure 5.12b), the resultant waveshape differs from that with any other phase 
relationship. This effect is purely visual, and if both the resultant waveforms in 
figure 5.12 were reproduced on independent loudspeakers, it would be impossible 
to detect the effect of the difference in phase shift. 

In some instances we may know the shape of the resultant wave but we may 
want to know which frequencies are present, together with their mapitudes and 
phase shifts. The procedure of breaking down a complex wave into its constituent 
components is known as waveform analysis. From the foregoing, complex periodic 
alternating waveforms consist of a number of sine waves, and a mathematical 
expression giving the instantaneous value of the resultant voltage is 

v = V1 m sin (wt + 1> t) + V2 m sin (2wt + ¢ 2 ) + ... + Vnm sin (nwt + ¢ n) + ... 

where Vnm is the maximum value of the nth harmonic voltage, cp n is the phase 
relationship of the nth harmonic with respect to a reference signal, and w = 2rrf 
where f is the fundamental frequency. 

Summary of essential formulae 

Frequency: f= 1/T hertz 

Instantaneous value of e.m.f: e =Em sin 8 volts 

Instantaneous value of current: i =I m sin 8 amperes 

For n equidistant mid-ordinates taken over a halFcycle: 
averagevalue=Iav=(i1 +i2 + ... + in)/n amperes 

RM S. value: I= y[ii + i~ + ... + i~ )/n] amperes 

Form factor= r.m.s. value/average value= I/Iav 

Peak factor or crest factor= maximum value/r .m.s. value =I m /I 

Sinusoidal waves: average value = Iav = 0.637 I m 

r.m.s. value =I= 0. 707 I m 

form factor = 1.11 

peak factor= 1.414 

Complex waves: v = V1 m sin (wt + ¢) + V2 m sin (2wt + ¢ 2 ) + ... 

+ Vn m sin (nwt + ¢ n) + ... 



6 Single-phase Alternating 
Current Circuits 

By definition, alternating quantities vary continuously not only in magnitude but 
also in direction. This raises some problems when attempting to draw 'direction' 
arrows on circuit diagrams for such quantities as voltage and current. The notation 
used in a.c. circuits follows the general principles laid down in chapter 1 for d.c. 
circuits as follows. 

Cu"ent - The direction of current flow is indicated by an arrow pointing in the 
assumed instantaneous direction of current flow, the arrow being on the branch. 

e.m.f. and p.d. -The polarity of the e.m.f. or p.d. between two nodes is indicated 
by an arrow between the nodes and which is off the circuit. The arrowhead of 
the potential arrow points towards the node which, instantaneously, is assumed 
to have the more positive potential. 

6.1 Circuit Containing Resistance Only 

In the circuit figure 6.1a, the instantaneous values of current and voltage are related 
by the equation 

i = vfR amperes (6.1) 

The equation applies at all instants of time, and the current and voltage waveforms 
are in phase with one another, as illustrated in figure 6.1b. Also, from equation 6.1 
the relationship between the two maximum values is 

Im = Vm/R amperes (6.2) 

and the r .m.s. current is 

I= V/R amperes (6.3) 

where Vis the r.m.s. value of the voltage across the resistor. 
Since the two waveforms are in phase with one another, the phasor diagram is 

represented by two lines lying on one another. 
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t 
R 

Vm 
_[~~~~----~ 

(a) (b) 

Figure 6.1 An a.c. circuit containing resistance only 

Example 6.1 

Calculate the r.m.s. value of current in an a.c. circuit whose resistance is 10 n, the 
supply voltage being v = 28.28 sin wt. 

Solution 

v = v mlv2 = 28.28/1.414 = 20 v 
I= V/R = 20/10= 2 A 

6.2 Circuit Containing Inductance Only 

Consider the circuit in figure 6.2a in which a resistanceless inductor is connected to 
an alternating supply. From the work in chapter 3, a 'back' e.m.f. is induced in the 
coil whenever the current flowing through the coil changes value. That is, the net 
e.m.f. acting in the circuit is 

di 
v - back e.m.f. = v - L -

dt 

Hence the instantaneous current in the circuit is 

or 

But, since R = 0 

. di 
iR=v-L­

dt 

di 
v=L­

dt 
(6.4) 

Therefore the waveforms of v and L di/dt are in phase with one another and are 
equal in magnitude, shown in the upper waveform diagram in figure 6.2b. Since L is 
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L 

(a) di 

~ 

I 
(c) (b) 

Figure 6.2 An a.c. circuit containing a pure inductance 

simply a number, then the wave form of di/dt is also in phase with that of v. The 
shape and phase relationships of the current waveform with respect to the voltage 
wave is deduced by integrating the di/dt waveform with respect to time. That is 

i = f(di/dt) dt 

Since the di/dt waveform is sinusoidal, then the current waveform is a (- cosine) 
wave, that is, the current lags behind the voltage by 90°. Consequently the phasor 
diagram for the circuit is as shown in figure 6.2c. 

The magnitude of the current can be determined from equation 6.4 as follows 

v = L di/dt 

or 

1 1 
di = L v dt = L V m sin wt dt 

hence 

Vm f Vm i = - sin wt dt = - - cos wt 
L wL 

but 

-cos wt =sin (wt- 90°) 
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therefore 

v 
i = ____!!! sin ( wt - 90°) 

wL 
(6.5) 

Equation 6.5 shows that the current waveform is sinusoidal and that it lags behind 
the voltage waveform by 90°, as shown in figure 6.3. Also, the maximum value of 
the current waveform is 

I = Vm 
m wL 

and the r.m.s. value of current, I, is 

v v 

amperes 

I= - = -- amperes 
wL 2rrjL 

(6.6) 

(6.7) 

where V= Vm/..J2, and is the r.m.s. value of the voltage across the inductor. The 
name inductive reactance, symbol XL, is given to the quantity wL, hence 

XL= wL = 2rrfL ohms (6.8) 

and in a purely inductive circuit it is this quantity which limits the magnitude of 
the current. 

Equation 6.8 shows that the circuit reactance is proportional to frequency, 
having zero value at zero frequency and having a high value at a high frequency. A 
graph showing the effect of frequency on both the inductive reactance and on the 
circuit current is shown in figure 6.4. 

Readers approaching the subject of a.c. circuits for the first time may be puzzled 
by the fact that the current lags behind the voltage across the inductor by a quarter 
of a cycle and that, in an apparently resistanceless circuit, the magnitude of the 

1!. red 
2 

t 

Figure 6.3 In a circuit containing a pure inductance only, the current lags behind 
the voltage by 90° 
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Figure 6.4 Variation of reactance and current with frequency in a circuit 
containing a pure inductance 

current is limited to a finite value. The reason for both of these lies in the 
phenomenon of the induced 'back' e.m.f., as follows. When the supply voltage 
begins to increase, the current cannot increase in sympathy with it since a back 
e.m.f. is induced in the winding of the inductance, and this e.m.f. opposes the 
change of current. The net effect is that the rise of current lags behind the rise of 
voltage. Also, since the magnitude of the back e.m.f. is related to the rate of change 
of current and must be equal in value to the supply voltage, then the magnitude of 
the current is 11mited by the above phenomenon. 

Example 6.2 

A pure indicator of 10 mH inductance is connected to an audio-frequency supply 
of 25 V r.m.s. at a frequency of 5kHz. Calculate the reactance of the inductor and 
the value of the r .m.s. current in the circuit. 

Solution 

XL= 2rrfL = 2rr X 5 X 103 X 10 X 10-3 = 314.2 Q 

I= V/XL = 25/314.2 = 0.0796 A 

6.3 Circuit Containing Pure Capacitance Only 

It was shown in chapter 4 that the equation for the current in a capacitor is 

dv 
i=C­

dt 
(6.9) 

where dv/dt is the rate of change of voltage across the capacitor. For the circuit in 
figure 6.5a, the waveforms of the current i and of C dv/dt are superimposed upon 
one another. Since Cis simply a number, the waveform of dv/dt is in phase with the 
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~) dv 

~ 

• I 

(c) (b) 

Figure 6.5 An a.c. circuit containing a pure capacitance 

current wave, shown in the centre waveform in figure 6.5b. The shape of the 
waveform of the voltage across the capacitor is obtained by integrating the 
waveshape of the dv/dt curve; this gives the lower curve in figure 6.5b. Comparing 
the current and voltage waveforms, we see that the circuit current leads the voltage 
across the capacitor by 90°. The phasor diagram corresponding to the waveform 
diagrams fori and v is shown in figure 6.5c. 

The scientific relationship between the current and voltage for a sinusoidal 
supply is derived from equation 6.9 as follows 

dv d 
i=C-=C-(Vm sinwt)=wCVm coswt 

dt dt 

= wCV m sin (wt + 90°) (6.10) 

Equation 6.10 indicates that the current has a maximum value of wCV m, and that 
the current leads the voltage across the capacitor by 90°. The maximum value of 
current is therefore 

Im = wCV m = V m/Xc amperes 

where Xc is the capacitive reactance of the capacitor and has the dimensions of 
ohms. That is 

Xc = 1/wC= 1/2rrfC ohms ( 6.11) 

The phase relationship between the voltage across the capacitor and the current 
through it are illustrated in figure 6.6. 
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TT 2 rod 

Figure 6.6 In a circuit containing a pure capacitance the current leads the voltage 
by 90° 

From equation 6.11 the capacitive reactance varies inversely with frequency, and 
its value is infinity at zero frequency and zero at infinite frequency. The resulting 
graphs of capacitive reactance and circuit current plotted to a base of frequency in 
a circuit containing only pure capacitance are shown in figure 6.7. 
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Figure 6.7 Variation of reactance and current with frequency in a circuit 
containing a pure capacitance 

Example 6.3 

A 10 pF capacitor is used in an electrical circuit which operates at a frequency of 
1.5 kHz. Calculate the reactance of the "Capacitor at this frequency. If the voltage 
across the capacitor is 15 V r.m.s., determine the value of the circuit current. 

Solution 
Xc = 1/2rrfC= 1/2rr X 1.5 X 103 X 10 X 10-6 

= 10.61 n 
I= V/Xc = 15/10.61 = 1.41 A 
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6.4 Series Circuit Containing Resistance and Inductance 

In the RL series circuit, figure 6.8a, the same current flows through R and L, and 
the applied voltage is equal to the phasor sum of the p.d.s across R and L. The 
voltage across R is 

VR =IR 

and is in phase with the current (see figure 6.8b ). The voltage across L is 

VL =!XL 

which, from the work in section 6.2, leads the current through it by 90°. The 
supply voltage Vis equal to the phasor sum of VR and V2, as shown in figure 6.8b, 
and its magnitude is 

V=.yi[(IR) 2 +(IXL)2 ] =I.yi(R 2 +XLn 

The quantity .yf(R 2 +XL 2 ) is known as the impedance, symbol Z, of the RL series 
circuit, whence 

V=IZ (6.12) 

The phase angle between the supply voltage and the circuit current is 

determined from the voltage triangle, figure 6.8c, which is derived from the 
information in figure 6.8b. 

(6.13) 

If the length of each side of the voltage triangle is divided by /, the impedance 
triangle (figure 6.8d) remains. The impedance triangle is more useful in some 
respects than the voltage triangle since it is geometrically similar to the voltage 

R L 

1:-vR=i v~ 
(a) 

\{=!XL V=IZ 

G?J •I 
VR= IR 

zjix, £} 
IR R 

(b) (c) (d) 

Figure 6.8 RL series circuit 



Single-phase Alternating Current Circuits 131 

triangle, but is independent of the applied voltage. The values of the impedance and 
phase angle can also be determined from the impedance triangle. Also 

cos¢= VRfV=R/Z (6.14) 

A practice commonly adopted when drawing phasor diagrams of electrical circuits 
is to draw the phasor of the quantity that is common to all (or most) components 
on the horizontal or reference axis. In the case of series circuits this quantity is the 
current; in parallel circuits it is the voltage. 

Example 6.4 

In a series RL circuit, R = 15 S1 and L = 0.05 H. If the circuit is connected to a 
100 V r.m.s., 50 Hz supply, calculate the value of the current and of its phase angle 
with respect to the applied voltage. 

Solution 

XL = 2rrfL = 2rr x 50 x 0.05 = 15.7 S1 

Z=y(R 2 +Xl)=y(152 + 15.72 )=21.7 S1 

I= V/Z = 100/21.7 = 4.61 A 

¢ = tan- 1 (XL/R) = tan- 1 (15.7/15) = 46°18' lagging 

6.5 Series Circuit Containing Resistance and Capacitance 

In the circuit in figure 6.9a, the voltages across the circuit elements are 

VR =IR 
Vc =IXc = 1/wC 

and are shown on the phasor diagram figure 6.9b, in which VR is in phase with the 
current and V c. the voltage across the capacitor, lags behind the current by 90° 
(see also section 6.3). Completing the parellelogram for V, the supply voltage, 
yields 

(6.15) 

where Z is the circuit impedance, and is given by 

(6.16) 

From figures 6.9c and d, the voltage and impedance triangles respectively, it can be 
seen that 

(6.17) 
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l1?= IR I IR R 

;T-l, ~ '\r z '\Jx, 
~= IXc 

and 

V =IZ 

(b) (c) 

Figure 6.9 RC series circuit 

VR R 
cos cp =- =­v z 

and that the circuit currents leads the applied voltage by cp. 

Example6.5 

(d) 

(6.18) 

In a series RC circuit the voltage across the resistance is found to be 34.2 V when 
the current flowing is 1.71 A. If the circuit is supplied by a 50 V, 50 Hz source, 
determine the values of the circuit impedance, the capacitive reactance and the 
capacitance of the capacitor. Calculate also the phase angle of the circuit. 

Solution 

R = VR/I= 34.2/1.71 = 20 ll 

Since I = 1. 71 A, then 

hence 

therefore 

z = V/I = 50/1.71 = 29.24 n 
= ..J(R2 + Xc2) 

Xc=..J(Z2 -R2 )=..j(29.242 -202 )=21.33n. 

= 1/2Tr/C 

C= 1/2Tr/Xc = l/2Tr x 50 x 21.33 F 

= 149.2JJ.F 
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and 

cos¢= VR/V= 34.2/50 = 0.684 

and 

¢ = 46° so' leading 

6.6 Series Circuit Containing Resistance, Inductance and Capacitance 

The RLC series circuit contains all three types of element, and we need to 
consider three operating conditions, namely when 

(a) XL >Xc 

(b) XL <Xc 

(c) XL =Xc 

Condition c is a special case known as resonance and is dealt with in detail in 
section 6.7. 

(a) XL >Xc 

A phasor diagram for the circuit in this condition is shown in figure 6.1 Ob, together 
with its impedance triangle figure 6.10c. Since XL > Xc, then /XL > !Xc or 
VL > V C· That is, the circuit appears as an inductive load to the supply, and the 
current lags behind the voltage by angle ¢. Inspecting the phasor diagram yields 

V = y[(/R)2 +(!XL - !Xc )2 ) = /y[R 2 +(XL - Xc)2 ) 

= Iy[R 2 + (wL- 1/wCj2] 

=IZ 

and the circuit impedance is 

Also 

and 

Z = y[R 2 +(XL - Xc) 2 ) = y[R 2 + (wL- 1/wC)2 ) 

VR R 
cos¢=-=-

R Z 

(6.19) 

(6.20) 

(6.21) 

(6.22) 

(6.23) 

The phasor diagram for the condition XL <Xc is shown in figure 6.10d, together 
with its impedance triangle in figure 6.10e. In this case V c > VL and Xc >XL, so 
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(b) (c) 

(d) (e) 

Figure 6.10 RLC series circuit 

that the current leads the applied voltage. Equations 6.19 to 6.23 above apply in 
this case with the exception that the terms (wL - 1/wC) and (VL - V c) are replaced 
by (1/wC- wL) and (V c- VL), respectively. The general equations for the RLC 
series circuit are 

V= y((/R)2 +(!XL - !Xc)2 ] = IZ 

Z=y[R2 +(XL -Xc)2 ] 

</> = tan-1 [(XL- Xc)/RJ 

cos rp =R/Z 

where the symbol -means 'the difference between', 

Example 6.6 

(6.24) 

(6.25) 

(6.26) 

(6.27) 

A current of 5 A at a frequency of 50 Hz flows in a series circuit similar to that in 
figure 6.10a, which contains a resistance of 11 U, an inductance of 0.07 H and a 
capacitance of 290 J1F. Calculate the voltage applied to the circuit and the phase 
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angle between the voltage and the current. Determine also the values of the voltages 
across the resistor, the inductor, and the capacitor 

Solution 

Xc = 1/2rr/C = 1/2rr X 50 X 290 X 10-6 = 10.97 n 
XL = 2rrjL = 2rr X 50 X 0.07 = 22 Q 

XL- Xc = 11.03 Q 

Z = y[R 2 +(XL ~ Xc)2 ] = y{11 2 + 11.032 ) 

= 15.58 n 
Since XL > Xc, the circuit appears as an inductive load to the power supply and 
the cu"ent lags behind the supply voltage. 

1/> = tan-1 [(XL ~ Xc)/R] = tan-1 (11.03/11) 

= 45°06' lagging 

The voltages across the various parts of the circuit are 

V=IZ = 5 X 15.58 = 77.9 v 
VR =IR = 5 X 11 =55 v 
VL =!XL = 5 X 22 = 110 V 

Vc =!Xc = 5 x 10.97 = 54.85 V 

The phasor diagram for the circuit is shown in figure 6.11. 
Note This circuit raises an interesting point in so far as the value of the voltage 
across the inductance is greater than the value of the supply voltage! This condition 
is discussed more fully in section 6.7. 

~ =110 v 

I 
I 
I 
I 
I 

V= 77·9V 

I 
4>=45·1°1 

~~---.~----~I=5A 

VR= 55 V 

~= 54·85 v 

Figure 6.11 Phasor diagram for example 6.6 
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6. 7 Series Resonance 

During earlier discussions it was shown that while inductive reactance increased 
with increasing signal frequency, capacitive reactance reduced with increasing signal 
frequency. If an inductor and a capacitor are connected in series to a variable 
frequency supply, there is a frequency known as the resonant frequency , fo or w 0 , 

at which the inductive and capacitive reactances are equal to one another. At this 
frequency the net reactance in the series circuit is zero, when 

IXL I= IXc I (6.28) 

Figure 6.12 shows the graphs of XL, Xc and (XL - Xc), and at frequency / 0 the 
value of (XL - Xc) is zero. The curve showing the modulus of the series circuit 
impedance, I Z I, is also shown. The latter curve has a high value at low frequencies 
due to the high reactance of the capacitance, and also has a high value at high 
frequency due to the high reactance of the inductance at these frequencies. The 
circuit impedance has its minimum value at frequency / 0 when the net reactance is 
zero and 

thus 

~ 
c: 
0 
"0 
C1> 
c. 
E 
"0 
c: 
0 
C1> 
u 
c: 
0 
u 
0 
~ 
o) 
u 
c: 

~ 
·;;; 
~ 

I 
I 

I 
I 
I 
I 
I 
I 

I 
I 

I 
I 

1= V/R 

/ 
/ 

I fo 
I 

Figure 6.12 Series resonance 

(6.29) 

(6.30) 
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and 

¢ = 0~ (6.31) 

that is, the current and voltage are in phase with one another. 
The phasor diagram of a series circuit at resonance is shown in figure 6.13. From 

equation 6.30, the supply voltage is equal to the voltage across the resistor; if the 
circuit resistance has a low value, the current at resonance is very high. The 
consequence of the high value of circuit current is that the voltages appearing across 
both the inductor and the capacitor may be very large, possibly many times the 
supply voltage. Care has to be taken in series resonant circuits to ensure that the 
insulation of the inductor and the dielectric strength of the capacitor are adequate 
to deal with the voltages involved. 

From the foregoing, when resonance occurs 

where w0 is the resonant frequency in rad/s. Hence 

w 0 = 1/y(LC) rad/s (6.32) 

and 

fo = l/2rry(LC) Hz (6.33) 

A factor known as the Q-factor or 'quality factor' indicates the voltage magnification 

V=IR 
~_.----------------~[ 

Vc = IXc 

Figure 6.13 Phasor diagram of an RLC series circuit at resonance 
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across either the inductor or the capacitor at resonance. Hence 

voltage across L (or C) at resonance 
Q-factor = ---='------''---'-----

voltage across R at resonance 

IwoL woL 2rrfoL 
=--=--=--

IR R R 

Since w0 = 1/y(LC), then 

Q-factor=k)(~) 

(6.34) 

(6.35) 

In some cases the so-called ~factor of the coil is quoted in technical literature. This 
arises from the fact that the resistance and inductance of the coil are inseparable, 
and its Q-factor ( = wL/R) may be quoted at some particular frequency w. This is 
not to say that the coil resonates at that frequency, but tnerely gives the ratio of 
reactance to resistance at that frequency. 

The variation of the value of current drawn by a series circuit as frequency varies 
is shown in figure 6.14, and is deduced from the shape of the impedance curve in 
figure 6.12. Both at very low and at very high frequency the circuit impedance is 
high, and the current has a low value. At the resonant frequency of the circuit the 
current has a peak value of I= V/R. 

Example 6.7 

A series circuit is found to be resonant at a frequency of 50 Hz, and consists of a 
resistor of 20 n, an inductor of 0.3 H and a capacitor. If the supply voltage is 
230 V, calculate at the resonant frequency (a) the value of the current in the 
circuit, (b) the capacitance of the capacitor, (c) the voltages across the reactive 
elements and (d) the Q-factor of the circuit . 

.... 
c 
Cll 
~ 
~ 
::> 
0 

"' E 
..: 

Figure 6.14 Variation of current with frequency in an RLC series circuit 
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Solution 

(a) I= V/R = 230/20 = 11.5 A 
(b) At resonance 

XL = 21TfoL = 21T x 50 x 0.3 = 94.26 .Q 

and, at resonance XL= Xc, hence 

C= 1/2TT[oXc = 1/2TT[oXL = 1/2TT x 50 x 94.26 F = 33.8MF 
(c) Vc = VL =!XL= 11.5 x 94.26 = 1084 V 
(d) Q-factor = 2TT[0 L/R = 94.26/20 = 4.713 
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Note The voltage across the reactive elements is 4.713 times greater than the 
supply voltage! 

6.8 Parallel Circuit Containing Resistance and Inductance 

In a parallel RL circuit - see figure 6.15a- the voltage across both elements is 
equal to the supply voltage V. Consequently, voltage V is used as the reference in 
the phasor diagram, figure 6.15b. The current/R flowing through the resistive arm, 
by reason of the work in section 6.1, is in phase with the supply voltage. Also, the 
current h flowing in the inductive branch lags behind the applied voltage by 90° 
(see section 6.2). The current I drawn from the supply is the phasor sum of IR and 
h, as shown in figure 6.15b; the resultant cu"ent lags behind the voltage applied to 

R 

I 

L 

la) 

I 
I 
I 
I 
I 
I 
I 
I 
I 

---------- !=VIZ 
h=V!XL 

(b) 

Figure 6.15 RL parallel circuit 
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the parallel RL circuit. Now 

and 

h = VfXL = V/wL = Vf2rrjL 

The magnitude of the current I drawn by the circuit is 

I I I = y(J R :z + h "1.) = V/Z 

where Z is the magnitude of the circuit impedance and 

4! = tan- 1 (hllR) 

also 

IR V/R Z 
coslj>=- =-=-

/ V/Z R 

Example 6.8 

(6.36) 

(6.37) 

(6.38) 

(6.39) 

(6.40) 

In an RL parallel circuit of the type in figure 6.15, R = 10 n and L = 0.05 H. If the 
circuit is energised by a 220 V r.m.s., 50 Hz supply, determine the value of the 
current drawn from the supply and its phase angle with respect to the supply 
voltage. Calculate also the magnitude of the impedance of the circuit. 

Solution 

XL = 2rrjL = 2rr x 50 x 0.05 = 15.71 H 

therefore 

h = V/XL = 220/15.71 = 14 A 

and 

IR = V/R = 220/10 = 22 A 

The magnitude of the current drawn from the supply is 

I I I= v'(IR 2 + h "1.) = y(22"1. + 14l) = 26.08 A 

From equation 6.39 

4> =tan -I (h)IR) =tan -t (14/22) = 32°28' lagging 

and from equation 6.38 

z = V/I = 220/26.08 = 8.44 n 
The phasor diagram of the circuit is shown in figure 6.16. 
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IL = 14 A 

Figure 6.16 

6.9 Parallel Circuit Containing Resistance and Capacitance 

A circuit diagram of a parallel RC circuit together with its phasor diagram is 
shown in figure 6.17. It differs from the parallel RL circuit only in that the current 
in the reactive branch leads the supply voltage by 90°. The relevant equations for 
the circuit are 

IR = V/R 

Ic = V/Xc = V/(1/wC) = wCV= 2rr[CV 

I I I =-.j(/R 2 + fc 2 ) = V/Z 

¢ = tan-1 (Ic/IR) = tan-1 (R/Xc) = tan-1 wCR 

cos¢ =IR/1= Z/R 

I 

v 
Ic=­

Xc 

R 

c 

v 

I=)!_ 
I Z 
I 
I 
I 
I 
I 
I 
I 
I 

Figure 6.17 RC parallel circuit 

(6.41) 

(6.42) 

(6.43) 

(6.44) 

(6.45) 
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Example 6.9 

In a circuit of the type in figure 6.17, R = 20 n and C= 10 ~-tF. If the circuit is 
energised at a voltage of 100 V r.m.s., 159.1 Hz, calculate the value of the 
capacitor, the current flowing in each branch of the circuit and the value of the 
current drawn from the supply. Determine also the phase angle of the current with 
respect to the supply voltage. 

Solution 

Xc = 1/2rr[C= 1/2rr X 159.1 X 10 X 10-6 = 100 n 
IR = V/R = 100/20 = 5 A 

lc = V/Xc = 100/100 = 1 A 

Ill =y(/R 2 +/c2 )=y(52 + 12 )= 5.1 A 

The current drawn from the supply leads the applied voltage by 

rt>=tan-1 (/c/IR)=tan-1 (1/5)= 11°19' 

6.10 Parallel Circuit Containing Resistance, Inductance and Capacitance 

For this type of circuit we need to consider the following three conditions 

(a) Ic > h that is, Xc <XL 

(b) Ic < h that is, Xc >XL 

(c) Ic = h that is, Xc =XL 

Condition c is the special case of parallel resonance, and is dealt with in 
section 6.11. 

(a)Ic>h 

The phasor diagram for this condition is shown in figure 6.18b. In this case the 
current I drawn from the supply leads the applied voltage by angle 4> . 

(b) Ic<h 

The phasor diagram is illustrated in figure 6.18c, in which the current drawn from 
the supply lags behind the voltage by angle 4> • 

The general equations corresponding to the parallel RLC circuit are 

IR = V/R 

h = V/XL 

Ic = V/Xc 

(6.46) 

(6.47) 

(6.48) 
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Example 6.10 

I 
I 
I 
I 

Figure 6.18 RLC parallel circuit 

/=y[/R 2 +(h -Ic)2] = V/Z 

rp = tan-1 [(h - lc)/IR] 

cosrp=IR/I=Z/R 
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(6.49) 

(6.50) 

(6.51) 

A circuit of the type in figure 6.18a, in which R = 12 n, L = 100 mH and 
C= 50 J.LF, is supplied by a 200 V r.m.s., 318.3 Hz source. Determine the value of 
the current in each branch of the circuit, the total current drawn from the supply 
and its phase angle. 

Solution 

XL = 2rrfL = 2rr X 318.3 X 100 X 10-3 = 200 n 
Xc = 1/2rr[C= 1/2rr X 318.3 X so X 10-6 = 10 n 
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The branch currents are calculated as follows 

IR = V/R = 200/12 = 16.67 A 

IL = V/XL = 200/200 = 1 A 

Ic = V/Xc = 200/10 = 10 A 

Nowh ~Ic = 1 ~ 10=9 A,(Ic>h),hence 

I I I= y[/R 2 + (h ~ /c) 2 ] = y(16.67 2 + 92 ) 

= 18.94 A 

Since I c > h, the current drawn from the supply leads the voltage by 

</> = tan-1 [(h ~ lc)/IR] = tan- 1 (9/16.67) 

= 28°22' 

The phasor diagram of the circuit is shown in figure 6.19. 

lc = 10 A 

V=200 V 

Figure 6.19 

6.11 Parallel Resonance 

Since the resistance and inductance of a coil cannot be physically separated, and 
the circuit in figure 6.20a is that of a practical parallel circuit, at the resonant 
frequency, [ 0 or w 0 , of the circuit the quadrature components of the currents in 
the two branches are equal to one another. That is, the quadrature components 
cancel each other out, and the current I drawn from the supply is in phase with the 
supply voltage. The phasor diagram of the circuit at resonance is shown in 
figure 6.20b. The angle <I>L in the phasor diagram is the phase angle of the inductive 
branch, so that 

reactance of the coil at resonance XL 
~n<t>= = 

impedance of the coil at resonance Z 

w0 L 
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Figure 6.20 Resonance in a parallel circuit 

145 

Now the current in the inductive branch is / 1 =VIZ£, and its quadrature 
component at resonance is 

V XL VXL 
/ 1 sinc/11 =- x-=--2 

ZL ZL ZL 

At resonance I c = I 1 sin cp L and, since I c = V/ X c then 

V VXL 
-=--

or 

that is 
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Solving for w 0 yields 

(6.52) 

In many practical circuits the value of R 2 is much less than L/C, and equation 6.52 
may be simplified to 

w 0 ~ 1/y(LC) (6.53) 

or 

fo ~ 1/2rry(LC) (6.54) 

Readers will note that equations 6.53 and 6.54 are identical to equations 6.32 and 
6.33 which relate to the resonant condition of the series circuit. 

At resonance the current drawn from the supply is in phase with the supply 
voltage, and the circuit presents a purely resistive load at this frequency. The value 
of this resistance is known as the dynamic resistance, R 0 , and is calculated as 
follows 

V V Vtan rf>L 
Ro =-= = ---= 

I It sin rf>Lftan rf>L Ic 

Vtan rf>L 

V/Xc 

1 w 0 L L 
=Xc tanrf>L =-- x--=- ohms 

w0 C R CR 

but, since w6 = 1/LC, then 

L w6L 2 
R -- ·- -- - ---:-----::--

0 - CR - R - w6 C2 R 

(6.55) 

(6.56) 

Readers will note from the above equations that when R = 0, then R 0 = oo! This 
implies that the smaller the value of R, the smaller the value of current drawn from 
the supply at resonant frequency. In the limiting case when R = 0, no current is 
drawn from the supply at resonance. 

For the above reason, the parallel resonant circuit is known as a rejector circuit, 
since it rejects current at the resonant frequency of the circuit. A graph showing the 
variation of the current drawn from the supply to a base of frequency is shown in 
figure 6.21. At zero frequency (d.c.) the effective value of circuit impedance is 
equal to the resistance of the coil, so that the current has a large value. At 
frequencies that are well above resonance the reactance of the capacitor is low, 
once more giving a large value of current. The minimum value of supply current of 
V/R 0 occurs at resonance. 

Inspecting the phasor diagram in figure 6.20b reveals that the value of the 
current Ic which circulates at resonance within the parallel circuit can be many 
times greater than the value of current I. In fact, the current drawn from the supply 
simply provides the energy losses within the parallel circuit at resonance. The 
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Figure 6.21 Variation of current with frequency in an RLC parallel circuit 

Q-factor of the parallel circuit is the ratio of the value of the circulating current at 
resonance to the value of the current drawn from the supply, and is a measure of 
the current magnification within the circuit. Hence 

Ic w 0 L 
Q = -- = tan ¢ = --

/ R 
(6.57) 

and, since w 0L = 1/w0 C, then 

Q = l/w0 CR (6.58) 

Example 6.11 

A coil of resistance 12 .Q and inductance 0.12 H is connected in parallel with a 
60 pF capacitor to a 100 V supply. Calculate the value of the resonant frequency of 
the circuit and determine its dynamic impedance at this frequency. What current is 
drawn from the supply at resonance? Also compute the Q-factor of the circuit. 

Solution 

From equation 6.52 

wo = }{r1c- ~:) = }(o.12 x ~ox w-6 - o~:~2) 
= 359 rad/s 

fo = wo/2rr = 57.1 Hz 

Note In the above calculation, (R/L 2 ) <{ (l/LC) and w 0 "" 1/y(LC). From 
equation 6.55 

R 0 = L/CR = 0.12/(60 x 10-6 x 12) = 166.7 n 
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The current drawn by the circuit at resonance is 

I= V/Rn = 100/166.7 = 0.6 A 

and 

Q-factor = w 0 L/R = 359 x 0.12/12 = 3.59 

6.12 Series-Parallel RLC Circuits 

In practical circuits each branch of a parallel circuit may itself be a complex 
network of resistors, inductors and capacitors. An example of this kind of circuit is 
illustrated in figure 6.22a. Since the circuit is basically a parallel circuit, the supply 
voltage is used as the reference phasor in the phasor diagram, figure 6.22b. The 
resultant current drawn from the supply is the phasor sum of the currents in the 
individual branches. A solution for a circuit of this type is illustrated in the 
following example. 

Example 6.12 

A circuit of the type in figure 6.22a contains elements with the following values: 
R 1 = 10 .Q, XL= 10 .Q, R 2 = 20 .Q, R 3 = 20 .Q, Xc = 20 .Q. Determine the values of 

I 

(b) 

Figure 6.22 A complex parallel circuit 
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each branch current and of the resultant current drawn from the supply. Calculate 
also the r.m.s. value of voltage across each component in the circuit. 

Solution 

To calculate the values and phase angles of the branch currents, it is first necessary 
to evaluate the magnitudes and phase angles of the branch impedances. 

For the upper branch 

z I = y(R I 2 + XL 2 ) = y'(l 02 + 102 ) = 14.14 S1 

J, = v;z, = 100/14.14 = 1.01 A 

r/> 1 = tan-1 (XL/Rd = tan-1 (10/10) = 45° lagging 

For the centre branch 

For the lower branch 

Z2 =R2 = 20 S1 

/ 2 = V/R 2 = 100/20 = 5 A 

¢2 = 0° 

z3 = y'(R3 2 + Xc 2) = y'(202 + 202 ) = 28.28 S1 

h = V/Z3 = 100/28.28 = 3.535 A 

r/>3 = tan-1 (Xc/R) = tan-1 (20/20) = 45° leading 

The horizontal component lh of the resultant current is 

Ih =I, cosr/>1 +I2 cos¢2 +I3 cos¢3 

= (7.07 X 0.707) + (5 X 1) + (3.535 X 0.707) = 12.5 A 

and the vertical component Iv of the resultant current is 

Iv =I1 sin r/> 1 + I 2 sin r/> 2 + I 3 sin r/>3 

= (7.07 X (-0.707)] + (5 X 0) + (3.535 X 0.707) 

=- 2.5 A 

The magnitude of the resultant current is 

I=y[l2.52 +(-2.5 2 )] = 12.75 A 

and the phase angle of the current is 

r/> = tan-1 (Iv/Ih) = tan-1 (-2.5/12.5) = tan-1 0.2 

= 11 o 19' lagging 
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6.13 Power Consumed by a Non-reactive Circuit 

Since the effective heating value of an alternating current is its r.m.s. value,/, and 
the effective value of voltage is its r.m.s. value, V, then the power consumed in a 
resistance R is 

P= V/=12 R watts (6.59) 

Expressed in mathematical terms, if the instantaneous values of voltage and current 
in resistor R are 

v = v m sin(} 

and 

i = Im sin(} 

where (} = wt, then the instantaneous power consumed is 

p=vi= Vm sincpxlm sin</>= Vmlm sin2 </> 

1 
= 2 V mlm (1 -cos 2(}) (6.60) 

The waveform corresponding to the product vi is shown in figure 6.23 and, since v 
and i are in phase with one another, then the instantaneous power curve always has 
a positive value except at zero angle and integral multiples of rr radians, when it has 
zero value. 

The average power, P, consumed by the circuit is determined by evaluating the 
integral 

I J21T I j2·rr I 
P =- vi d(} =- - V mlm (I -cos 2(}) d(} 

2rr o 2rr o 2 

Vmlm y2V X y2/ 
=-- = =VI watts 

2 2 
(6.6I) 

6.14 Power Consumed by a Circuit Containing Resistance and Reactance 

When the current and voltage waveforms are not in phase with one another, which 
occurs in circuits containing reactance, then the graph of instantaneous power 
becomes negative during part of the cycle. This is illustrated in figure 6.24 for the 
case where the current lags behind the voltage. During the interval AB in 
figure 6.24a, the value of v is positive and that of i is negative, giving the 
instantaneous product p = vz a negative value. It occurs again during the interval CD 
when v has a negative value and i has a positive value. The negative part of the 
power waveform has a physical meaning and is explained below. 

During the period BC, power is supplied to the circuit and some of it is stored in 
the (inductive) reactance. The negative area in period CD represents energy 
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p p 

Figure 6.23 Waveforms of voltage, current and power in a resistive circuit 

returned from the reactance to the generator. The average power consumed during 
the whole cycle is proportional to the difference between the positive and negative 
areas under the instantaneous power curve. 

If the angle of lag increases (¢ increases), then the mean area under the 
instantaneous power curve is reduced since the 'negative' area increases. Conse­
quently, the average power consumed is reduced as ¢ is increased. 

The equations defining the instantaneous values of voltage and current in 
figure 6.24 are 

v=Vmsine 

i =1m sin (e- ¢) 

and the instantaneous power consumed by the circuit is 

p=vi= Vmlm sine xsin(e -¢) 

I 
=2Vmlm [cos¢-cos{2e -¢)] 

1 I 
=2Vmlm cos¢-2Vm1m cos(2e-¢) 

The average power consumed by the circuit is computed from the integral 

I j 2 " V I P = -- p de = ~ cos¢ = VI cos ¢ 
21T 0 2 

(6.62) 

Equation 6.62 can be shown to be valid for both inductive and capacitive circuits. 

Example 6.13 

Two circuits A and B are energised by a 100 V r.m.s. a.c. supply. The current 
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v 

(a) 

p 

~ AA g_ --- ----- ----- ----- ~veroge power= VI cos cp 

vv 

(b) 

Figure 6.24 Voltage, current and power waveforms in a circuit containing a 
resistor and an inductor 

flowing in each circuit is 10 A and the phase angle of circuit A is 0° and that of 
circuit B is 60°. Calculate the power consumed by each circuit. 

Solution 

For circuit A 

p = VI cos 0° = 100 X 10 = 1000 w 
For circuit B 

P= VI cos 60° = 100 X 10 X 0.5 = 500 w 

6.1 S Power Consumed by a Circuit Containing a Pure Reactance Only 

From equation 6.62 we see that when cp = 90° (either lagging or leading), then the 
average power consumed by the circuit is 

P = VI cos 90° = 0 
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That is, the average power consumed by a pure reactance is zero. The waveform 
diagrams in figure 6.24 offer an explan~tion for this phenomenon; when ¢ = 90° 
the average area under the power curve is zero, and the energy consumed by the 
reactance during each quarter cycle is returned to the generator during the 
following quarter cycle. 

6.16 Power Factor 

In a.c. work, the product of the r.m.s. values of voltage and current is known as the 
volt-ampere product or the apparent power, symbol S. Multiplying the apparent 
power by the factor cos¢ for the circuit gives the power consumed. For this reason, 
cos¢ is described as the circuit power factor. That is 

power = volt amperes x power factor 
or 

power factor = power/volt amperes 
that is 

cos ¢ = P/VI = P/S (6.63) 

In the case of the series circuit, the power factor is {see figures 6.8, 6.9 and 6.1 0) 

resistance R 
cos¢= =-

impedance Z 
(6.64) 

When the power factor of a series circuit is unity, that is ¢ = 0°, the power 
consumed is a maximum. When the phase angle is 90° (either lagging or leading), 
the power factor is zero and the power consumed is zero. 

6.17 Reactive Power 

A phasor diagram for an RL series circuit is shown in figure 6.25a. The power 
triangle in figure 6.25b is geometrically similar to the voltage triangle and, as we 
have seen, the apparent powerS is given by the expression 

S = VI volt amperes (VA) 

Vsin cp ---------- V 

_?¥t Lt_JQ =VI sin cp 

v cos <P P =VI cos cp 

(a) (b) 

Figure 6.25 {a) A phasor diagram and (b) its VA triangle for an a.c. circuit 
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and the active power or real power, P, is 

P = VI cos¢ watts 

The product of the current and the reactive component of the voltage (V sin¢) is 
known as the reactive power, Q, where 

Q = VI sin ¢ volt amperes reactive (V Ar) 

6.18 Power Factor Correction 

In most forms of electrical power systems the supply voltage remains fairly 
constant, and the heating effect produced in the equipment is related to the current 
drawn by the equipment (more correctly, it is related to ( current)2 ). For this 
reason many forms of electrical equipment, including transformers and electrical 
machines, are rated in terms of their volt-ampere capacity. The actual power output 
(or power consumed) then depends on the power factor at which the machine 
operates. Thus an alternator rated at 1 MV A can provide, at lk V, a current of 
1000 A whatever the power factor of the connected load. It can, however, only 
~provide an output of 1 MW at unity power factor. At lower values of power factor 
the output power is less than 1 MW. 

Moreover the heating effect and therefore the frame size of electrical machines is 
dependent on the value of (current)2 consumed. Also, for a given amount of power 
transmitted through the cables and transformers of a transmission system, the lower 
the value of the power factor the greater the value of current transmitted. Hence, 
for a given value of transmitted power, a low power factor results in increased 
power losses. 

So important is the value of the power factor of the load that power-supply 
authorities include a clause in their tariffs which penalises consumers if their power 
factor falls below a certain level. 

The majority of industrial loads have a lagging power factor, and one method of 
improving the power factor is to connect a capacitor in parallel with the load, as 
illustrated in the following example. The object of the use of the capacitor is to 
draw an additional current from the supply which leads the supply voltage by 90°; 
this current provides some compensation for the lagging current taken by the 
inductive load. 

Example 6.14 

A 500 V, 50 Hz single-phase motor draws a full load current of 40 A at a power 
factor of 0.85 lagging. Calculate the power consumed by the motor. A bank of 
capacitors of 80 J.LF capacitance is connected in parallel with the motor; determine 
the current drawn by the combination when the motor is on full load. What will 
then be the power factor of the combination? 
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Solution 

The power consumed by the motor is 

P= V/1 cos¢1 

where / 1 is the current drawn by the motor, and ¢ 1 is the phase angle of / 1 with 
respect to V (see figure 6.26). Hence 

P = 500 X 40 X 0.85 = 17 000 W = 17 kW 

also the component of I 1 which is in phase with the supply voltage is 

/ 1 cos¢1 =40x0.85=34A 
now 

and the quadrature component or reactive component of / 1 is 

/ 1 sin ¢ 1 = 40 x sin 31°48' = 40 x 0.527 = 21.08 A 

The reactance Xc of the capacitance is 

Xc = 1/2rrfC= 1/2rr X 50 X 80 X 10-6 = 39.8 n 
and the current the capacitor draws from the supply is 

I c = V/ X c = 500/39.8 = 12.56 A at an angle of 90° leading 

r, = 40 A 

Figure 6.26 
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The value of the in-phase component /h of the total current h is 

/h =/1 cose/>1 =34A 

and the value of the quadrature componentlv is 

lv = Ic- /1 sin C/> 1 = 12.56- 21.08 =- 8.52 A 

The magnitude of the total current drawn from the supply is 

I /T I = vtcf~ + 1;) = y'[342 + ( -8.52)2 ] = 35.06 A 

(Note This is a 12.3 per cent reduction of current when compared with the original 
value of 40 A for the same power consumption.) The power factor of the parallel 
combination is given by 

cos cf>T =IT cos cf>T/IT =/1 cos C/> 1//T = 34/35.06 = 0.97lagging 

Summary of Essential Formulae 

Resistive circuit: V = IR and cf> = 0° 

Purely inductive circuit: V =/XL and cf> = 90° (current lagging) 

XL = wL = 2rr[L 

Purely capacitive circuit: V = IXc and cf> = 90° (current leading) 

Xc = 1/wC= 1/2rr/C 

R, L and C in series: V = IZ 

Z = v[R 2 +(XL "'Xc)2 ] = y(R 2 + X 2 ) 

cf> = tan-1 (X/R) = cos-1 (R/Z) 

Series resonance: w 0 = 1/y(LC) rad/s 

/ 0 = 1/2rry(LC) Hz 

Q-factor = woL/R = i j ( 2) 
Parallel resonance: w - }(-1- R 2

) rad/s 0 - LC- L2 

fo = w0 /2rr Hz 

When(l/LC)~(R/L2 ), then 

wo = 1/v(LC) and / 0 = 1/2rrv'(LC) Hz 

dynamic resistance= R 0 = L/CR = wU 2 /R = 1/w5C2R 

Q-factor = w0 L/R = 1/w0 CR 
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Apparent power: S = VI volt amperes 

Power: P = I2 R = VI cos cp watts 

Power factor: cos cp = P/VI = P/S = R/Z (in a series circuit) 

Reactive power: Q = VI sin cp volt amperes reactive (VAr) 
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7 Complex Notation 

7.1 Operator j 

In the two preceding chapters the concept of the phase-angle difference between 
phasors was introduced, and in the following an analytical method is developed for 
the representation of phase difference. If we take phasor OA of length a in 
figure 7.1. and turn it through 90° in an antic/ocl.:wise direction, we say that we 
have operated on the phasor. To indicate that the phasor has rotated through 90°, 
we write 

OB= ja {7.1) 

where j is the 90° operator. Note Length OB is shown in bold type to indicate that 
it is a phasor quantity. 

If we operate once more on the phasor so that it assumes position OC, then 

(7.2) 

But, since OC = -a, then 

or 

(7.3) 

hence 

j = y(-1) (7.4) 

Since the square root of minus unity does not exist as a 'real' quantity, the notion 
that quantities along the quadrature axis (that is, axis BOD) are imaginary has 
evolved. Consequently, the horizontal axis COA is sometimes described as the real 
axis. Readers will realise that simply to turn a quantity through 90° does not make 
it any more 'real' or 'imaginary' than it was in the first place. In the above context, 
the words 'real' and 'imaginary' merely refer to the horizontal and vertical 
directions, respectively. 

Operating on phasor OC by j gives 

OD=j 3 a (7.5) 
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8 

ja 

D 

Figure 7.1 Operator j 

and performing the operation once more yields 

OA = j 4 a 

Equation 7.6 yields 

Representation ofphasors by Cartesianf or rectangular components 
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(7.6) 

A complex quantity such as r 1 in figure 7 .2a can be resolved into two components, 
each perpendicular to the other. For convenience, the horizontal (real) and 
perpendicular (imaginary) directions are chosen. Thus the phasor r 1 can be 
expressed in the form 

r 1 =rh 1 +jrv 1 =r1 cos6 1 +jsin6 

and, in figure 7.2b, phasor r 2 can be represented as 

The modulus or magnitude of the phasor r 1 is calculated from the relationship 

(7.7) 

I r, I= y(rhl 2 + rvl 2 ) (7.8) 

and its argumentt or phase angle is 

t After Descartes the French rna thema tician and philosopher 

tAngle 0 is sometimes written arg r, 

(7.9) 
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. . 8 '•1 = VI sm 1 

1 rh2 = r2cos 82 

'h1 = r, cos 8, 

'•2 = r2 sin 82 
2 

(o) (b) 

Figure 7.2 Representation of complex quantities by rectangular components 

Representation ofphasors by polar components 

A complex quantity can also be represented in terms of its modulus r and phase 
angle (},as follows 

r1 = r11!!J 

In the case of figure 7 .2b, r 2 is represented by 

r2 = rd-62 or r2 \.0"; 

7.2 Addition and Subtraction of Phasors Using Rectangular Components 

It was shown in chapter 5 that the 'horizontal' and 'vertical' components of the 
sum of two phasors are determined by adding the respective components of the 
original phasors. Suppose that phasors X and Y in figure 7.3 are to be added 

·r(~ ~~ . / 
r .. 
Ll~l~___,___-+---+--

: yh : ,___._, 
I 
:..-...- Xh----.. 
I i._ ____ zh ___ _ 

Figure 7.3 Addition of phasors by rectangular components 
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together, where 

X = xh + j Xv and Y = Yh + j Yv 

Completing the parallelogram in figure 7.3 gives the components of the sum of the 
two phasors as 

zh = xh + Yh and Zv = Xv + Yv 

whence phasor Z, which is the sum of the two phasors is 

Z = zh + j Zv = (xh + Yh) + j (xv + Yv) 

The modulus of Z is 

and 

Example Z1 

Voltages V 1 = 10.3 + j2.1 and V2 = 5.6 + j7.3 are connected in series with each 
other. What is the magnitude and the phase angle of the resultant voltage V s? 

Solution 

Vs = V1 + V2 = (10.3 + j2.1) + (5.6 + j7.3) 
= (10.3 + 5.6) + j (2.1 + 7.3) = 15.9 + j9.4 v 

hence 

and 

¢=tan-1 (9.4/15.9)=tan-1 0.5912=30°36' 

Example 7.2 

Determine the complex expression for the current I which is the phasor sum of the 
two currents / 1 = -3 + j6 and / 2 = -1 - j8. Evaluate the magnitude and the phase 

angle of/. 

Solution 

The phasor diagram is shown in figure 7.4. 

/=/1 +/2 = (-3 + j6) + (-1- j8) 
= (-3- 1) + j(6- 8) = -4- j2 A 
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11 =-1-j8 

Figure 7.4 

hence 

III=y[(-4)2 +(-2)2 ] =4.472A 

and 

Phasor subtraction 

In section 5.9 it was shown that the phasor difference is obtained by first adding a 
phase shift of 180° to the phasor to be subtracted and then performing phasor 
addition as follows. 

The phasor difference z' =X- Yin figure 7.5 is obtained by adding -Y to X, 

hence 

Example 7.3 

Z'=X+(-Y)=(xh +jxv)-(yh +jyv) 
= (xh- Yh) + j(xv- Yv) 

Determine the phasor difference I= / 1 -/2, where (a) / 1 = 10 + j8, / 2 = 5 + j3, and 

(b)/1 =-3+j8,/2 =-8-j3. 

Solution 

(a) /=(10+j8)- (5 +j3) =(10- 5) +j(8- 3) 

= 5 + j5 A 
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I Yh-: r ----' 

---
-y 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

----'JZ'= X-Y 

Figure 7.5 Subtracting phasors using rectangular components 

(b) I= ( -3 + j8) - ( -8 - j3) = ( -3 + 8) + j(8 + 3) 

= 5 + jll 

7.3 Addition and Subtraction of Phasors Using Polar Components 
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Adding and subtracting phasors by polar components is an inconvenient process, 
and is more easily performed by first converting the phasors into their rectangular 
components and completing the addition and subtraction as outlined above. The 
answer has then to be reconverted into polar co-ordinate form. 

Example 7.4 

Calculate (a) the phasor sum I 1 +I 2 and (b) the phasor difference I 1 - I 2 of the 
currents/1 = 2/45° andi2 = 3/-60°. 

Solution 
I 1 = 2/45° = 2(0.7071 + j0.7071) = 1.1412 + j1.1412 A 
12 = 3/-60° = 3(0.5 - j0.866) = 1.5 - j2.598 A 

If the phasor sum is Is, then 

Is= I1 + I2 = (1.4142 + j1.4142) + (1.5- j2.598) 
= 2.9142- j1.1838 A 
= y'(2.9142 2 + 1.18382 ) ftan -I (-1.1838/2.9142) 
= 3.146 I -22°09' 
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If the phasor difference is I d, then 

lct =/I -/2 = (1.4142 + j 1.4142)- (1.5- j2.598) 
=- 0.0858 + j4.012 A 
= yl6.11 /tan -I [4.0142/(-0.0858)] 
= 4.013 /180°- 88°48' = 4.013 /91 °12' A 

7.4 Multiplication of Phasors Using Rectangular Components 

When multiplying phasors expressed in rectangular-component form the normal 

rules of algebra apply. If V1 =a+ jb and V2 = c + jd, the product of the two 

phasors is 

VI X v2 =(a+ jb) . (c + jd) 

= ac + jad + jbc + l bd = ac + l bd + j(ad + be) 

Since j" = -1, then 

VI X v2 = (ac- bd) + j(ad +be) 

A product term of particular interest in electrical engineering is that of a pair of 

conjugate complex numbers. Two quantities are said to be conjugate if their 

magnitudes are equal to one another, but the phase angle of one phasor is +8 and 

that of the other is -8. Thus the complex conjugate of (a + jb) is (a - jb ), and the 

product of a complex conjugate pair is 

(a+ jb) · (a- jb) = a2 +jab -jab- j2 b = a2 + b 2 

Hence the product of a pair of complex conjugate numbers yields a product with 

no quadrature term, that is, no j term (see also section 7.6). 

In the polar form, the complex conjugate of V&_ is Vi=§_, and the product of a 

complex conjugate pair is 

(see also section 7.5). 

Example 7.5 

Evaluate the product of the complex numbers 2 + j3 and 4- j5. 

Solution 
(2+j3) · (4-j5)=8-jlO+j12-j2 15 

= [8- (--15)] + j(-10 + 12) = 23 + j2 
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7.5 Multiplication of Phasors Using Polar Components 

The rule that applies to the product of the phasors R 1 = rJ/~..1 and R 2 = r2~ is 

R 1 xR 2 =r1r2 /8 1 +8 2 

Example 7.6 
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Determine the value of the product of the complex numbers 3.606/56°19' and 
6.403/-51 °20'. 

Solution 

3.606.&6°19' X 6.403/-51°20' 

= (3.606 X 6.403)/56°19' + (-51°20') 

= 23.09/4° 59' 

Note The complex numbers used in examples 7.5 and 7.6 are identical, and the 
two solutions represent two versions of the same solution. In practical terms, 
measurements of voltages and currents are usually obtained in polar form by means 
of a magnitude-measuring device such as a voltmeter or ammeter in conjunction 
with a phase-measuring device such as a cathode ray oscilloscope or a phasemeter. 

7.6 Division of Phasors Using Rectangular Components 

The quotient of two complex quantities can be obtained by first eliminating the 
quadrature terms in the denominator by a process known as rationalising. To carry 
this out, both the denominator and the numerator are multiplied by the complex 
conjugate of the denominator. If V1 =a+ jb and V2 = c + jd then, in order to 
evaluate V1 /V2 it is necessary to rationalise the expression as follows. 

V1 a + jb a + jb c - jd ac + bd + j(bc - ad) 
-=--=--x--= 
V2 c + jd c + jd c - jd c2 + d 2 

ac+bd .be-ad 
= c2 + d2 + J c2 + d 2 

Example 7. 7 

If two voltages V 1 = 8.66 + jS and V2 = 10- jlO exist in an electrical circuit, 

determine the value of V 1 /V2 • 
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Solution 

8.66 + jS 
10- j10 

Electrical Circuits and Systems 

(8.66 + jS)(lO + j10) 

(10- j10)(10 + j10) 

_ 86.6 + jSO + j86.6 + f 50_ 36.6 + j 136.6 
- 1 02 + 1 02 - 200 

= 0.183 + j0.683 

7. 7 Division of Phasors Using Polar Components 

Division of complex numbers is carried out by first eliminating the quadrature part 
of the numerator, as in the case using rectangular co-ordinates as follows. If 
V 1 =A~ and V 2 = B~, then 

V1 A&.t A/81 B/-82 AB/81- 8J_ 
- =--=--x--= 
V2 B@_2_ B/82 B/-82 B2 /82 - 82 

A 
=-!81-82 

B 

Example 7.8 

Divide 10/30° by 14.14/-45°, and give the result in polar form. 

Solution 

lOa.[: = __!.Q_ /30°- (-45°) = 0.707/75° 
14.14/-45° 14.14 -

7.8 Representation of Voltage, Current, Impedance and Admittance in Complex 
Notation 

In general terms, the voltage and current in an a.c. circuit is expressed in the form 

V = Vf!! and I= I/2_ 

where a and {3 are the angular displacements of V and I, respectively, from a 
reference datum. It is often the case that either V or I are used as the reference 
phasor, so that either a or {3 has zero value. 

Pure resistance 

In a circuit containing only pure resistance, the current and voltage are in phase 
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with one another so that 

V=V~ and I=I/.St_ 

and the complex value of the circuit impedance Z is 

Pure inductance 

v v 0 
Z=-=-/Sr_ =R 

I I 
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In a circuit containing only pure inductance, the current lags behind the voltage by 

90°, so that if 

V= V/.St_ 

then 
I= I/-90° = -ji 

The circuit impedance Z is 

V VLQ~ V o o . 190o . 
Z=-=--o=- 190 =XL/90 =jXL =wL_=jwL 

I I/-9Q_ I L'_'_ -

Pure capacitance 

In this case the current leads the voltage across the capacitor terminals by 90°, 

hence if 
V= V/.St_ 

then 
I= I/90° 

and 

V V/0° V o o 1 o j 1 
Z=-=--=-/-90 =X /-90 =---/-90 =-- -=--

I I/90° I -- c__ wC -- we jwC 

Series circuit impedance 

In a series circuit the total impedance of the circuit is the sum of the individual 

impedances of the components; the individual impedances must be expressed in 

complex notation form, otherwise they cannot be added together. In the case of a 

circuit containing R, L and C in series, the circuit impedance is 

Z=R + jwL +~-=R + jwL _ _j_=R +j wL- --1 . ( 1 ) 
JWC wC wC 

=R +j(XL- Xc) 
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The modulus of the impedance is 

1Zi=y[R2 +(XL -Xc)2] 

and the circuit phase angle is 

</>=tan -I [(XL - Xc )/R] 

and 

COS</> =R/ IZ I 

If a number of complex impedances Z 1 , Z 2, ... Zn are connected in series, then 
the effective complex impedance of the circuit is 

Ze=Z1 +Z2 + ... +Zn 

Impedance and admittance of parallel circuits 

If two impedances Z 1 and Z 2 are connected in parallel with one another, the 
effective impedance Ze of the combination is 

The admittance Y of any circuit element is 

I 1 
Y = - = - = G + jB siemens 

v z 
where G is the conductance of the element, and B is its susceptance, and is the 
quadrature part of the admittance. 

For a purely resistive circuit 

1 
Y = - = G siemens 

R 

For a circuit containing a pure inductive reactance 

or 

Y = - 1- = --j = -1- /-90° = -jB siemens 
jwL XL XL--

For a circuit containing a pure capacitive reactance 

1 
Y = -- = jwC= jXc = Xc/90° = jB 

1/jwC 
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or 

B=Xc 

For a circuit containing resistance, inductance and capacitance in parallel 

Y = Y1 + Y2 + Y3 =- ~ ~1~ + jXc =- + j Xc ~-1 . 1 ( 1) 
R XL R XL 

or 

G = 1/R and B = ( Xc ~ ~J 

7.9 Impedance and Admittance of Basic Circuits 

In many instances it is convenient to be able to convert the impedance of, say, a 

series circuit into its admittance form. In the following the basic procedures for the 

conversions are outlined, and the results are given for the four basic circuits in 

figure 7.6. 
Using the relationship 

Z= 1/Y 

R L 
(o) 

R C 

~~-·--<0 (b) 

(c) 

(d) 

Figure 7.6 Basic RL and RC combinations 
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then, once either the admittance or the impedance is known, the other can be 
calculated. In the case of figure 7 .6a, the circuit impedance is 

Z=R +jwL 

and its admittance is 

y = _ = = __ R_----'J'-·w_L __ 
Z R + jwL (R + jwL)(R- jwL) 

R wL 
= R2 + (wL)2- j R2 + (wL)2 = G + jB 

where 

and 

Applying this technique to the four circuits in figure 7.6 yields the results in 
table 7.1. 

Table 7.1 

Circuit z 

figure 7.6a R +jwL 

figure 7.6b R- j/wC 

Rw2L 2 wLR2 
figure 7.6c +" R2 +w2L2 J R2 +w2L2 

figure 7.6d 
R jwCR2 

1 + w 2C2R 2 1 + w 2C2R 2 

7 .1 0 Solved Series Circuit Examples 

Example 7.9 

y 

R wL 
R2 + w2 L 2- j R2 + w2 L 2 

_J_· 

R wL 

1 
-+jwC 
R 

A current of (1 0 + jO) A flows through a circuit of impedance (2 + j3) D. Calculate 
the value of the voltage across the resistive and reactive elements in the circuit, and 
also determine the value of the applied voltage. Compute also the phase difference 
between the applied voltage and the circuit current. 



Complex Notation 171 

Solution 

The circuit diagram is shown in figure 7 .7a, together with its phasor diagram 
figure 7.7b. Now 

V = IZ = (10 + j0){2 + j3) = 20 + j30 = IR + jiXL 

Thus, the r.m.s. value of voltage across the resistive element is 20 V, and that across 
the reactive element is 30 V. The modulus of the supply voltage is 

I vI= y(202 + 302 ) = 36.06 v 
and the circuit phase angle is 

¢ = tan- 1 (VLfVR) = tan-1 {30/20)= 56°18' 

and, since the circuit has an inductive reactance, the current lags behind the applied 
voltage. 

Example 7.10 

2+j3.\1 
(a)~ 

IO+jiOA 

(b) 

Figure 7.7 

A capacitance of 100 11F is connected in series with a coil of resistance 5 n and 
inductance 0.12 H, the combination being supplied by a 500 V r.m.s., 50 Hz 
source. Calculate (a) the r.m.s. value of the circuit current, (b) the phase angle and 
power factor of the circuit, (c) the r.m.s. voltage across the coil and (d) the r.m.s. 
value of voltage across the capacitor. Calculate also the power absorbed by the coil. 
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Solution 

The circuit with its phasor diagram is shown in figure 7 .8. The impedance Z L of the 
coil is 

ZL =R + jwL = 5 + (j27T X 50 X 0.12) = 5 + j37.7 n 
= 38 /82°26' n 

The reactance of the capacitance is 

Zc = -j/wC= -j/(2tr X 50 X 100 X 10-6 ) = -j31.83 n 
The circuit impedance Z is 

Z=ZL +Zc = (5 + j37.7) + (-j31.83) = 5 + j5.87 D. 
= 7.71 /49°35' 

(a) I= V/ I Z I= 500/7.71 = 64.85 A 
(b) Phase angle= l/J = 49°35'. Since XL> Xc, the current lags behind the voltage. 
(c) Voltage across C= I IXc I= 64.85 x 31.83 = 2064 V 
(d) Voltage across the coil= IIZL I= 64.85 x 38 -= 2464 V 

I 

v 
\~coil Vc -coil i_5_n_ ----o-:12-Hi 100 11F 

I-----IY'n--\....4--l 1------<> 
I I L ___________ _j 

ZL 

f--f----~[ 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Figure 7.8 



Complex Notation 173 

Note From the results in (c) and (d) above, the circuit operates at a frequency 
which is close to and just above the resonant frequency of the circuit. 

The power absorbed by the coil is 

I / 2 R I= 64.852 X 5 = 21 027 w = 21.027 kW 

Example 7. I I 

When a voltage of (50+ j75) V is applied to a circuit, the current is found to be 
(2.25 + j6) A. Determine (a) the complex expression for the circuit impedance, 
(b) the phase angle between the current and the voltage (state if lagging or leading), 
and (c) the power consumed by the circuit. 

Solution 

V= 50+ j75 = 90.15 /56°181 V 
I= 2.25 + j6 = 6.41 /69°261 A 

(a) The circuit impedance is determined from the expression 

v 90.15illTI 0 1 o 1 z =I= 6.411690 271 = 14.06/56 19 - 69 21 

= 14.06/-13°081 n 

= 14.06 [cos (-13°081) + j sin (-13°081
)] = 13.7- j3.2 n 

(b) From the results of part (a) above 

¢ = 13°081 leading 

Note The phase angle could have been determined from the phase angles of the 
voltage and current as follows 

¢ = 69°261 - 56°181 = 13°081 

(c) Power= VI cos¢= 90.15 x 6.41 x cos 13°081 = 562.8 W 

7.11 Solved Parallel Circuit Examples 

Example 7. I 2 

When a 250 V r.m.s., 50 Hz supply is connected to the circuit in figure 7.9, the 
phase angle between 18 and the applied voltage is 30°. Determine (a) the complex 
expressions for /A, Ia and lin rectangular co-ordinate form, (b) the r.m.s. values of 
each of the currents, and (c) the power consumed by the inductive branch. 
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I 
300 tJ.F 

Figure 7.9 Circuit for example 7.12 

Solution 

(a) The impedance triangle for the inductive branch is shown in figure 7.10a, in 

which 

therefore 

Hence 

ZB = R/cos 30° = 10/0.866 = 11.55 D. 

ZB = 11.55 /30° 

IB = V/ZB = 250/11.55 /30° = 21.65 /-30° A 

= 18.75- j10.83 A 

(a) 

R 

(b) 

Figure 7.10 (a) Impedance triangle for the inductive branch of figure 7.9, and 
(b) the phasor diagram for example 7.12 
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The reactance of the capacitor is 

Xc = -j/2rrfC= -j/2rr x 50 x 300 xl0-6 = -jl0.61 S1 

Hence 

and 

(b) From the above 

h = V/Xc = 250/(-jl0.61) = j23.56 A 

I =h +Is= j23.56 + (18.75- j10.83) 
= 18.75 + jl2.73A 

h = 23.56 A 

Is= 21.65 A 

I= y(18.75 2 + 12.732 ) = 22.65 A 

(c) Power consumed by the inductor = Is 2 R = 21.65 2 x 10 

= 4687 w 

Example 7.13 
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Impedances Z 1 = (20 + j15) S1 and Z 2 = (10- j60) S1 are connected in parallel with 
one another. If the supply frequency is 50 Hz, determine the resistance and the 
inductance or capacitance in each branch. Calculate also the complex admittance of 
the parallel circuit and the phase angle between the resultant current and the 
applied voltage. 

Solution 

Since Z 1 = (20 + j15) rl, it consists of a resistance of 20 S1 in series with an 
inductive reactance of j 15 rl. Hence 

2rrfL = IS S1 

or 

L = 15/2rrf= 15/(2rr x 50)= 0.04774 H = 47.74 mH 

Also, since Z2 = (10- j60) rl, it consists of a resistance of 10 S1 in series with a 
capacitance of reactance -j60 S1 that is 

or 

1 /2rrfC = 60 S1 

C = 1/(2rrf x 60) = 1/(2rr x 50 x 60) = 0.000053 F 

=53 11F 
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Now 

and 
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y = _!_ = 1 = 20 -- j 15 - 20 - j 15 
1 Z1 20 + j15 202 + 152 625 

= 0.032 - j0.024 s 

1 1 10+j60 
y2 =-=---z2 10- j60 102 + 602 

= 0.0027 + j0.0162 s 

10 + j60 

3700 

The total admittance of the parallel circuit is 

y = yi + y2 = 0.032- j0.025 + 0.0027 + j0.0162 

= 0.0347- j0.0078 s 
The phasor diagram showing the applied voltage and resultant current is shown in 
figure 7 .11. From the figure 

VB B 0.0078 cp = tan-1 - = tan-1 - = tan-1 -- = tan-1 0.2248 
VG G 0.0347 

= 1 2'' 40' lagging 

VY cos¢= VG 

-jVYsin ¢ =- jVB 

I=VY 

Figure 7.11 Phasor diagram for example 7.13 

7.12 Solved Series-Parallel Example 

Suppose in the circuit in figure 7.12 we need to evaluate the impedance of Z and to 
determine the elements it contains given that the supply voltage is 1 00/.Sf V and 
that /= 10~ A. The value of the voltage Vp across the parallel circuit is also 
required. 

If the impedance of the complete circuit is Z 1 , then 

z I = VII= 1oo[!L /10~ = 10L!L_ n = 10 +jOn 
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z 

I -L__ _________ --o v <>-------------' 

Figure 7.12 Circuit diagram for the problem in section 7.12 

The voltage V s across the series section of the circuit is 

Now 

hence 

Vs =I (5 + j5) = 10(5 + j5) =50+ j50 V 

V= Vp + Vs 

Vp = V- Vs = (100 + jO)- (50+ j50) =50- j50 V 

= 70.7/-45° v 

The current I 1 in the lower arm of the parallel section is calculated as follows 

I1 = Vp/(10 + j10) = 70.7/-45°/14.14/45° = 5/-90° A 

=-j5 A 

Also, since I= I i + I2 , then 

I2 =I-I1 =(10+j0)-(-j5)=10+j5A 

= 11.18/26°34' A 

The value of impedance Z is calculated as follows 

Z = Vp/I2 = 70.7/-45° /11.18/26°34' = 6.32/-71 °34' 

= 6.32 [cos (-71 o 34') + j sin (-71° 34')] 

= 6.32 (0.3162- j0.9487) = 2- j6 Q 

177 

That is, Z consists of a resistor of 2 Q resistance in series with a capacitor whose 
reactance is 6 Qat the operating supply frequency. 
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7.13 Calculation of Power, VA and V Ar Using Complex Notation 

Suppose that the voltage and current phasors associated with a circuit are as shown 

in figure 7.13. The power consumed by the circuit is 

P = VI cos 1/J = VI cos (a - ~) 

=the in-phase component of VI/a-~ 

=the in-phase component of (VIa x /[:1) 

That is, the power consumed is the product of the complex expressions of the 

voltage and the conjugate of the current. 
If V =a+ jb and I= c + jd, the complex conjugate /*is I* = c - jd. The power 

consumed is given by the 'real' part of the product VI*as follows 

where 

and 

hence 

VI* = S =(a+ jb )(c - jd) = (ac + bd) + j(bc - ad) 

= P + jQ =power+ j (reactive volt amperes) 

Power = P = ac + bd watts 

Reactive VA = Q = be - ad V Ar 

Apparent power= S = y(Jfl + Q2 ) = y[(ac + bd)2 +(be - ad)2 ] 

S = P + jQ = S!!P_ VA 

Example 7.14 

A voltage of (100 + jO) V is applied to an inductive circuit of impedance 

(1.732 + jl) n. Calculate the power consumed by the circuit and also the VA and 

V Ar consumption. What is the power factor of the circuit? 

v 

Figure 7.13 Calculation of power, VA and V Ar in a.c. circuits 
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Solution 

z = 1.732 + j1 [l = 2/30° [l 

Hence 

I= 100/(2/30°) = 50/-30° A 

The complex conjugate /*of the current is 

I*= 50/30° 
Hence 

VI* = IOOLQ': x 50/30° = 5000/30° VA 

= 5000(0.866 + j0.5) = 4330 + j2500 VA 

From the above expression 

and 

Apparent power= S = 5000 VA 
Power = P = 4330 W 
Reactive VA = Q = 2500 V Ar 

Power factor = cos ¢ = cos 30° = 0.866 

7.14 Operator h (or a) 
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In three-phase work the supply voltage phasors are displaced by 120° from one 
another- see figure 7.14 in which the voltage phasors are VR, Vy and V8 . In 
three-phase analysis it is sometimes convenient to use an operator which causes the 
phasors to rotate through 120° rather than 90°. Thus in figure 7.14 

0866 V8 

Figure 7.14 Operator h 
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VB= VR /120° = hVR 

where h is an opera tor having the value 1 I 120°, hence 

h = 1/120° = -0.5 + j0.866 

Operator his sometimes described as operator a. Also, from figure 7.14 

Vy = VR /240° = h 2 VR 

where 

h2 = 1/240° = -0.5- j0.866 

and 

hence 

h 3 = 1/360° = 1 +jO 

Summary of essential formulae 

/ =- 1 = 1/180° 

j = 1/90° = v'(-1) 

1=1/!l=I(cose +j sin8)=A +jB 

Ill = v'(A 2 + B2 ) and e = tan-1 (B/ A)= cos-1 (A/I) 

If!h X ZL!h_ = IZ/¢1 + 1!2 

Vf!h V 
-- =- /¢1-¢2 
IL!h_ I 

1 A-jB A-jB 
A + jB = (A + jB)(A - jB) = A 2 + jj1. 

Inductive reactance: XL = jXL = j2rr/L = Xd2J)~ 

Capacitive reactance: Xc =- jXc =- j/2rr/C= Xcf-90° 

Series RL circuit: Z = R + jXL = Z/¢ 

where ¢ = tan-1 (XLIR) = cos-1 (R/Z) 

Y= 1/Z 

Series RCcircuit: Z = R- jXc = Z~ 

where ¢ = tan-1 (Xc/R) = tan- 1 (R/Z) 

Y= 1/Z 
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Impedances in series: z = zl + z2 = (R I + jXI) + (R2 + jX2) 

= (R1 + R2) + j(X1 + X2) =ZI!P_ 

where Z = V[(R 1 + R 2 ) 2 + (X1 + X2 ) 2 ] 

and ¢=tan-1 [(X1 +X2 )/(RJ +R2)] 

Admittancesinparallel: Y= Y 1 + Y2 =(G1 +jBJ)(G2 +jB2 ) 

=(G1 +G2)+j(B1 +B2 )=YI!P__ 

where Y=v[(GJ +G2 ) 2 +(B1 +B2 ) 2] 

and ¢=tan-1 [(B1 +B2 )/(G1 +G2 )] 

Apparent power: S = VI* = P + jQ volt amperes 

where I* is the complex conjugate of I 

Pis the power in watts 

Q is the reactive power in V Ar 

Operator h (or a): h = 1/120° = -0.5 + j0.866 



8 Polyphase Alternating 
Current Circuits 

8.1 Introduction to Polyphase Systems 

A polyphase system is one which comprises two or more sets of supply voltages 
which have a fixed phase angle difference between them. In the two-phase system 
(figure 8.1a) the phase difference is 90°, and in the three-phase system (figure 8.1b) 
it is 120°. Although the three-phase system is the most popular, some installations 
use six-, twelve- and twenty-four-phase systems. 

A feature of the three-phase system is that, for a given amount of power 
transmitted through the system, the polyphase supply requires a smaller volume of 
copper (that is, conductor material) than does the equivalent single-phase system. 

8.2 Generating Three-phase E.M.F.s 

In three-phase work it is necessary to identify each of the phase voltages, and a 
convention which has been adopted is to call the phases the R (red), Y (yellow) and 
B (blue) phases, respectively. In another convention they are known as the A (or a), 
B (or b) and C (or c) phases. 

A single-phase supply is generated by a single loop or coil of wire that rotates in 
a magnetic field in the manner shown in figure 8.2a. At the instant of time shown, 
conductors R and R' move in a direction which is parallel to the magnetic field and 
do not cut the magnetic flux, and the instantaneous value, v R R ·, of the e.m.f. 
induced in the coil, is zero. As the loop rotates in an anticlockwise direction, 
conductor R passes under the upper pole piece when the polarity of the 
instantaneous e.m.f. induced in the coil is positive, having a maximum value of V m 

when the coil is perpendicular. When the angle turned through exceeds 180°, 
conductor R passes under the lower pole piece and the polarity of the induced 
e.m.f. becomes negative. 

In the case of the polyphase generator, figure 8.2b, the e.m.f.s are induced in 
coils that are physically displaced from one another by 120°. The voltage induced 
in winding RR' is as described for the single-phase case. At the instant of time 
considered in the figure, conductor Y is under the lower pole piece and conductor 
B is under the upper pole piece. Consequently, the polarities of the induced e.m.f.s 
Vyy• and vBB' are negative and positive respectively. As the conductors rotate, 
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.....--:----- \.'1 

(a) (b) 

Figure 8.1 (a) Two-phase and (b) three-phase supply systems 

conductor Y passes under the centre of the lower pole, when the maximum value of 
e.m.f. with negative polarity is induced in it, before it moves towards the position 
assumed initially by conductor R, which it reaches after 120° of rotation. Thus the 
waveform associated with voltage vy y • is generated by phasor Y in figure 8.2b, 
which lags behind phasor R by 120°. Conductor B has to rotate through 240° 
before it reaches the initial position of conductor R, so that voltage v88•is 
represented by phasor B which lags behind phasor R by 240°. Alternatively, phasor 
B can be regarded as leading phasor R by 120°. 

As in the single-phase case, the phasors associated with three-phase systems are 
scaled to represent r.m.s. values rather than maximum values. 

R 

(a) 

(b) 

Figure 8.2 Generating (a) a single-phase supply and (b) a three-phase supply 
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The phase sequence of the phasors is given by the sequence in which the 
conductors pass the point initially taken by conductor R in figure 8.2b. Thus the 
phase sequence is R, Y, 8 and is known as the positive phase sequence (P.P.S.). 

In all normal supply systems the r.m.s. values of V R, V y, and VB are equal to 
one another, and the phase difference between pairs of voltage phasors is 120°. 
Such systems are known as symmetrical supply systems. In a few cases the 
magnitudes of the voltages differ from one another and also the phase difference 
between pairs of phasors may not be 120°; in such cases the supply is said to be 
unsymmetrical Unsymmetrical conditions can occur as a result of a fault, for 
example a short-circuit between a pair of lines, or an open-circuited line. 

8.3 Star Connection of Three-phase Windings 

If ends R', Y', and B' of the coils in figure 8.2b are joined together, the resulting 
connection is known as the star connection, shown in figure 8.3a. The common 
connection of the three windings is known as the neutral point, N, of the system; 
the voltages between terminals R-N, Y-N and 8-N are the phase voltages of the 
system and, in a symmetrical system, are equal in magnitude. The symbol given to 
the phase voltage is Vp. Since terminals R, Y, and Bare connected to the outgoing 
lines, they are known as the line terminals, and the voltages between them are the 
line-to-line voltages (or line voltage), V L· 

The phasor diagram for the system voltages is shown in figure 8.3b, in which the 
phase voltage between the neutral point and line R is VRN· the phase voltage 
between the neutral and line Y is VyN, and that between the neutral and line B is 
VBN• where 

V R N = voltage of line R with respect to the neutral point 
VvN =voltage of line Y with respect to the neutral point 
VBN =voltage of line B with respect to the neutral point 

B B 

y y 

(a) (b) 

Figure 8.3 Phase voltages and line voltages in balanced three-phase system 
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(The double subscript notation used here corresponds to that developed in 
chapter 1.) The voltage between lines R and Y is V R y, where 

V R y = voltage of line R relative to line Y = V R N - Vy N 

also 

V BR =voltage of line B relative to lineR= V8 N - V RN 

and 

Vy 8 =voltage of line Y relative to line B = VyN- V8 N 

The way in which the line voltages are determined from the above equations is 
shown in figure 8.4. If V p is the r.m.s. value of each phase voltage, then 

VRN = VpL[: = Vp(l + jO) 

VyN = Vr/240° = Vp(-0.5- j0.866) = h 2 Vp 

VsN = Vp/120° = Vp(-0.5 + j0.866) = hVp 

(8.1) 

(8.2) 

(8.3) 

where h is the complex operator 1/120° (see section 7.14). From the equations 
given earlier 

VRY = VRN- VyN = Vp(l +jO)- Vp(-0.5- j0.866) 

\ 
\ 

\ 
\ 

\ 

= Vp(l.S + j0.866) = v'3 Vp/30° (8.4) 

\ 
\ 

\ 
\ ------- -:Y::..-_._..___ __ ~ 
-~ ~ 

VyN \ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

I 

\_ 
/ VBN 

I 

Figure 8.4 Relationship between the phase and line voltages in a three-phase 
system 
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From equation 8.4, the magnitude of V R y (that is, the line voltage) is y3 V p, 

hence 

Line voltage magnitude = y3 x Phase voltage magnitude 

Thus, a three-phase star-connected supply with a phase voltage of 240 V has a line 
voltage of 416 V. 

8.4 Star-connected Loads 

A three-phase four-wire supply system is illustrated in figure 8.5. The load is 
supplied via lines R, Y, and B, and the neutral point, N, of the supply is linked to 
the star point, S, of the load by a link known as the neutral wire. The load is 
described as a balanced load if the impedance and the power factor are the same in 
each phase of the load. If this is not the case, then the load is said to be unbalanced. 

In the case of the star-connected system, the current flowing in the phase 
winding (or load) is equal to the current flowing in the line. That is 

Phase current = Line current 

or 

lp=h 

The relationship between the neutral wire current and the currents in the loads (the 
phase currents) is obtained by applying Kirchhoff's first law to the star point of the 
load as follows 

8~---------------------r-----, 

N 

neutral 
wire 

Y~---------------------------J 

generator load 

Figure 8.5 A three-phase four-wire supply system 

(8.5) 
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Balanced loads 

If the impedance of each load is Zl.!P.:_ that is, an inductive load, the phase currents 
are 

(8.6) 

o Vp o 
/B = VBNIZ~ = Vp/120 IZ~ = z /120 - rp 

Hence 

Vp o o 
IN = h + /y + /B = z (1~ + 1/240 - r/> + 1/120 - r/>) (8.7) 

=0 

The terms within the brackets in equation 8.7 are shown in figure 8.6, and their 
phasor sum is seen to be zero. That is, in a balanced three-phase star-connected 
load the instantaneous value of the neutral current is zero. The reason for this can 
be physically argued from equation 8.6 as follows. If the load in each phase is a 
pure resistance of 100 n and if the phase voltage is 100 V, then 

/R = 100&:/100 = 1i!L = 1 + jO A } 

/y = 100/240°/100 = 1/240° =- 0.5- j0.866 A 

/B :;;:: 100/120°/100 = 1/120° =- 0.5 + j0.866 A 

Figure 8.6 Phasor diagram corresponding to equation 8.6 

(8.8) 
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Hence the magnitude of the current in each line is the same, but the direction of 
flow of the 'real' and quadrature components differ. From equation 8.8, line R 
carries a 'real' component of current of+ 1 A, that is, 1 A towards the load, while 
lines Y and Beach carry a 'real' component of current of 0.5 A away from the load. 
Similarly, the quadrature component of the Y line current is balanced by the 
quadrature component of the B line current. Consequently, no current flows in the 
neutral wire under conditions of balanced loading. 

This fact is utilised in many industrial situations in which motors present a 
balanced load to the supply, and many installations use a three-phase three-wire 
supply system which does not employ a neutral wire. 

When designing an electrical installation, it is necessary to know the charac­
teristics of the connected loads, described as follows. The analysis of the current 
waveform of a fluorescent lamp shows it to have a large third-harmonic component, 
in some cases as much as one-third of the total current. When identical fluorescent 
lamps are connected in the form of a star load to a three-phase supply, the 
fundamental (mains) frequency components of current cancel out in the neutral 
wire in the manner described above. However, the phase relationships between the 
harmonic components are such that the harmonics add together. Thus the neutral 
wire current from this kind of load consists entirely of third-harmonic current (that 
is, three times the supply frequency) and is of large value (nearly equal in 
magnitude to the line current), even though the load is nominally balanced. 
Moreover, power factor correction of the lamp does not improve the situation since 
it simply reduces the fundamental frequency (mains frequency) component of 
current, and does not reduce the third-harmonic current to the same extent. 

Unbalanced loads, three-phase four-wire system 

In the case of an unbalanced load the sum of the line currents is not zero, and a 
current flows in the neutral wire (see example 8.1 below). 

Example 8.1 

Loads of(lO + jl5) D., (25 + jO) D., and (30- j50) Q are connected in the R, Y, and 
B phases, respectively, of a star-connected load. If the line voltage is 550 V r.m.s., 
calculate the values of the line and neutral wire currents, the power consumed by 
each load and the total power consumed. 

Solution 

The circuit diagram is illustrated in figure 8.7a. The phase voltage is 

Vp = VLf-y'3 = 550/y3 = 317.5 V 
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550V R 

Vv 

ly y 

(a) (b) 

Figure 8.7 (a) Circuit diagram for example 8.1 and (b) its phasor diagram 

Now, ZR = (10 + j15) Q,Zy = (25 + jO) n, and Zn = (30- j50) Q hence 

31 7. 5 + j 0 _3 _1 7_. 5_,_(_1 O_-_:J,_·1-'-5) 
I - -

R - 10 + j 15 - 102 + 152 

=9.77-j14.65A=17.61/56°19' (lagging) A 

I _ 317 .5( -0.5 - j0.866) 
y- 25 + jO 

6.35- jll A= 12.7/-120° (that is, in phase with Vy) A 

In= 317.5(-0.5 + j0.866) = _ 5.44 + j0.092 A 
30- j50 

= 5.45/179° (that is, leading Vn by 59°) A 
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Note The currents and their phase angles can also be evaluated in polar form 
directly by using the voltage and impedance values in polar form. 

IN = IR + Iy +In = (9.77- j14.65) + ( -6.35- jl1) + ( -5.44 + j0.092) 

= -2.02- j25.56 A= 25.63/265°30' A 
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That is, the neutral current leads Vy by 25°30' or it can be regarded as lagging 
behind VR by 94°30'. The power consumed in each phase is 

PR =/R 2 RR = 17.61 2 X 10=3101 W=3.101 kW 

Py = /y 2 Ry = 12.72 X 25 = 4032 w = 4.032 kW 

PB =/B 2 RB = 5.452 x 30 = 891 W = 0.891 kW 

where R R, R y, and R B are the resistive components of the impedances in the R, Y, 
and B phases respectively. The total power consumed is 

P=PR +Py +PB = 8.024kW 

Unbalanced loads, three-phase three-wire systems 

In the case of a three-phase three-wire system, the neutral wire is omitted - see 
figure 8.8. Thus 

IR +/y +fu=O 

If the load is balanced the sum of the line currents is zero, and the voltage between 
the star and neutral points, V SN, is also zero. In the case of an unbalanced load the 
sum of the line currents must again be zero; the unbalance in the system loading 
usually manifests itself as a shift in the star point voltage, so that VsN is no longer 
zero (see example 8.2 below). The value of VsN can be calculated using Millman's 
theorem (see section 2.12) which, when applied to figure 8.8 gives 

VRYR + VyYy + VBYB V SN = --..!.''-'c:_-=---=----=-_:::; 

YR + Yy + YB 
(8.9) 

B I 8 B 

~BN 

ly 
y y 

Figure 8.8 A three-phase three-wire supply system 
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where YR = 1/ZR, Yy = 1/Zy, and Y 8 = l/Z8 . Also 

VRN = VRs + VsN 

VyN = Vys + VsN 

VsN = Vss + VsN 

and 
1 

/R = VRs/ZR = VRsYR l 
/y = Vys/Zy = Vys Yy 

Is= Vss!Zs = VssYs 

Example 8.2 
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(8.10) 

(8.11) 

Three non-reactive resistors of 10 n, 20 nand 25 n are connected in the R, Y, and 
B lines, respectively, of a star-connected load. The load is energised by a 400 V 
r.m.s. symmetrical three-phase supply. Calculate (a) the voltage between the star 
point of the load and the neutral point of the supply, (b) the voltage across each 
load, (c) the current in each line, and (d) the power consumed by each resistor. 

Solution 

and 

From equation 8.9 

Vp = VLfy3 = 400/y3 = 231 V 

VRN = 231 + jO 

VyN = 231(-0.5- j0.866) = -115.5- j200 V 

VsN = 231(-0.5 + j0.866) = -115.5 + j200 V 

YR = 1/ZR = 1/10 = 0.1 S 

Yy = 1/Zy = 1/20 = 0.05 S 

Y8 = 1/Z8 = 1/25 = 0.04 S 

() (231 X 0.1) + [(-115.5- j200) X 0.05)] + [(-115.5 + j200) X 0.04)] 
a VsN 

0.1 + 0.05 + 0.04 

= 66.87- j10.53 v = 67.69/-8°57' v 
The phasor diagram of the system is shown in figure 8.9. 
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Figure 8.9 Phasor diagram for example 8.2 

(b) From equation 8.10 

VRs = VRN- VsN = (231 + jO)- (66.87- j10.53) 

= 164.13 + j10.53 = 164.5/3° 40' v 
Vvs = VvN- VsN = (-115.5- j200)- (66.87- j10.53) 

= -182.37- j189.47 = 263/226°05' v 
Vss = VsN- VsN = (-115.5 + j200)- (66.87- j10.53) 

= -182.37 + j21 0.53 = 278.5/130° 54' v 

(c) From equation 8.11 

h = VRs Y R = (164.13 + j10.53) X 0.1 

= 16.41 + jl.053 A= 16.45/3° 40' A 

/y = VvsYy = -9.12- j9.47 A= 13 .. 15/226°05' A 

Is= VssYs = -7.3 + j8.42 A= 11.14/130°54' A 

(d) The power consumed is 

PR = /R 2 RR = 16.452 X 10 = 2706 W 

Py =!y 2 Ry = 13.152 X 20 = 3458 w 
P8 =I8 2 R 8 = 11.142 x 25 =3102 W 
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B I a 

ly 

generator lood 

Figure 8.10 A delta-connected three-phase three-wire system 

8.5 Delta Connection or Mesh Connection of Three-phase Windings 

If the three windings of the generator in figure 8.2b are connected so that the 'end' 
of one winding is connected to the 'start' of the next winding, the result is the delta 
connection or mesh connection in figure 8.10. 

The voltage between lines R and Y is designated the symbol V R y, where 

VRY =voltage of lineR relative to line Y = VRN- VvN 

The magnitude of the line voltage is given the symbol VL and, from figure 8.4 we 
see that 

VR y = VLLJ!L ) 

VBR = Vd150°0 

VyB = VLf-90 

{8.12) 

That it is possible to connect the winding without causing a current to circulate 
around the generator windings in the absence of an external load is shown in the 
following. Suppose that the delta connection is opened at point X in figure 8.11. 

B 

R 

Figure 8.11 Closing the mesh connection 
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The voltage V x R between points X and R is given by the expression 

VxR = VsR + Vys + Vxy 

where V x y has a value equal to V R y in figure 8.1 0. Hence 

VxR = VLf150o+ VLf-90° + VLf30° 

= Vd(-0.866 + j0.5)- jl + (0.866 + j0.5)] 

=OV 

Since the voltage between points X and R is zero, no current flows around the loop 
when points X and R are connected together. 

8.6 Relationship Between the Line and Phase Voltages and Currents in a 
Delta-connected System with a Balanced Load 

From figure 8.10 we see that the voltage induced in each winding (the phase 
voltage) is equal to the line voltage, so that in the delta system 

Magnitude of the phase voltage = Magnitude of the line voltage 

or 

(8.13) 

Applying Kirchhoffs first law to node R of the generator in figure 8.10 yields 

from which the line current, IR, is 

IR=IRy-IsR} 
also at node Y Iy =Iys- IRY 

and at node B Is =IsR- Iys 

(8.14) 

If the load has unity power factor, then I R y is in phase with V R y , Is R is in 
phase with VB R, and I y B is in phase with Vy s to give the phasor diagram in figure 
8.12. With a balanced load the magnitudes of the phase currents are equal to one 
another and are repsented by lp and, from figure 8.12 we see that 

/R = 2/p COS 30° =y3 /p = 1.732/p 

Again, with a balanced load the magnitudes of /R, ly and Is are equal to one 
another and are equal to the line current h, hence 
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ly Vy8 

Figure 8.12 Relationship between the values of the line and phase currents in a 
balanced mesh-connected system 

or 

Magnitude of the line current = Magnitude of the phase current 

h =y3/p 

8.7 Currents in an Unbalanced Delta-connected Load 

(8.15) 

In an unbalanced load either the magnitudes of the phase currents differ from one 
another, or the phase angles differ. Equations 8.13 and 8.14 hold good for 
unbalanced systems, and the general method of analysis is outlined in the following 
example. 

Example 8.3 

A mesh-connected load consists of the following 

Impedance between lines Band R: (10.4 + j 6) .Q 
Impedance between lines Y and B: (15 + j 0) .Q 
Impedance between lines RandY: (7.07- j 7.07) .Q 

If the line voltage is 300 V, calculate the values of the line currents and draw the 
phasor diagram. 

Solution 

The phasor diagram in figure 8.13 corresponds to the solution below. 

ZsR = 10.4 + j6 = 12/30° n 
zv s = 15 + jO = 15&: n 
zR v= 7.07- j7.07 = 10/-45° n 
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Now 
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Figure 8.13 
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IR = /RY- JBR 

/sR = VsR/ZsR = 300/150°/12/30° = 25/12cL A 

= -12.5 + j21.65 A 

/ys = Vys/Zys = 300/-90°/15/0° = 20/-90° A 

= -j20 A 

/R y = VR y/ZR y = 300/30° /10/-45~ = 30/75° A 

= 7.76 + j29 A 

From equation 8.14 

/R =/RY -/BR = (7.76 + j29)- (-12.5 + j21.65) 

= 20.26 + j7.35 = 21.55/19°56' A 

/y =/ys -/RY =-j20-(7.76+j29) 

= -7.76- j49 = 49.61/-99° A 

Is =/sR- /ys = (-12.5 + j21.65)- (-j20) 

= -12.5 + j41.65 = 43.48/106° 42' A 
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8.8 Power, VA and VAr Consumed by Three-phase Systems 

The power consumed by one phase of a three-phase load is V pip cos¢, where¢ is 
the phase angle of the load in that phase. Hence the power consumed in a 
three-phase system, either balanced or unbalanced, is the sum of the individual 
values of power consumed in the three phases. 

Power consumed by a balanced system 

In a star-connected system, Vp = VLfy'3, and lp = h hence the power consumed is 

VL . I p = 3 X V p/ p COS 1/J = 3 X V3 X h COS 1/J = y 3 V d L COS 1/J 

In a delta-connected system, Vp = VL, lp = !Lfy'3, and the total power consumed 
is 

h . I p = 3 X V pf p COS 1/J = 3 X V L X V3 X COS 1/J = y 3 V Lh COS 1/J 

In general, the power consumed by a balanced load is 

p = y3 V Lh COS 1/J W 

Volt amperes consumed by a balanced load 

The total apparent power consumed in any balanced three-phase system is 

S = 3 Vplp 

But, from the above, Vplp = VLh/y3, hence 

S =y'3 VLh VA 

Reactive volt amperes consumed by a balanced load 

The total V Ar consumed by a balanced load is 

Q=3 Vplp sin¢=y'3 VLh sin¢ 

Example 8.4 

A three-phase system supplies a balanced load of 25 kW at a power factor of 0.8 
lagging, the line voltage being 500 V r.m.s. Calculate the values of the line and 
phase currents if the load is (a) star connected, (b) delta connected. 



198 

Solution 

hence 

Electrical Circuits and Systems 

I L = Pj( ..j3 V L cos ¢) = 25 000/( ..j3 X 500 X 0.8) 
= 36A 

(a) In a star-connected system 

Ir =h = 36 A 

(b) In a delta-connected system 

Ip = h/vf3 = 20.7 A 

Example 8.5 

A delta-connected induction motor provides a shaft power of 100 kW and its power 

factor is 0.85 lagging. The efficiency of the motor is 86 per cent. The machine is 

supplied by a three-phase supply with a line voltage of 400 V, r.m.s.; calculate the 

values of (a) the line current and (b) the current in the motor windings. 

Solution 

Power supplied= shaft power/efficiency 

= 100 000/0.86 = 116 280 w 

= ..j3 V Lh COS </J 

(a) The value of the line current is 

h = 116 280/(..j3 X 400 X 0.85) = 197.4 A 

(b) The current in each of the delta-connected windings is 

Ip = h/vf3 = 113.9A 

8.9 Measurement of Power in Three-phase Systems 

The power consumed by an electrical system is measured by means of wattmeters, 

and one of the most useful types for three-phase power measurement is the 

dynamometer wattmeter. This type of instrument contains two sets of coils, one set 

being physically fixed to the body of the instrument and carrying the load current, 

l Another coil which is free to rotate within the first set of coils is energised by a 
voltage, V. The pointer of the instrument indicates the value of the product 

VI cos¢, where¢ is the angle between Vandi. In certain instances the reading VI cos¢ 

is not the power consumed by a specific part of the circuit. An example of this 
is found in the two-wattmeter method of measuring power, which is dealt with later 
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in this section, in which the total power consumed by a three-phase load is the sum 
of the readings of the two wattmeters, neither wattmeter reading having 
significance when taken alone. 

Measurement of power in a balanced three-phase system 

In the special case of a balanced three-phase load, it is possible to use one 
wattmeter to measure the total power consumed. Two methods generally in use are 
shown in figure 8.14. In figure 8.14a, wattmeter W 1 reads Vph cos c/J, that is, the 

current coil 

potential (voltage) 
coil 

artificial star 
point 

balanced load 

(a) 

balanced load 

(b) 

Figure 8.14 Measurement of power in a balanced three-phase load using only one 
wattmeter 



200 Electrical Circuits and Systems 

power consumed by one phase of the load. The total power consumed is three 
times the reading of W 1 . 

Alternatively, the wattmeter is used in conjunction with two resistors which are 

connected so as to provide an 'artificial' neutral point. The power read by W 2 is 
V Ph cos¢, which is one-third of the power consumed by the load. 

Measurement of power in any three-phase system, either balanced or unbalanced 

A theorem, known as Blonde/'s theorem, states that the minimum number of 
wattmeters required to measure the total power consumed in a polyphase system is 
(N- 1 ), where N is the number of lines used to supply the system. Thus the total 
power consumed in a three-phase, four-wire system can be measured by three 
wattmeters, and two are required for a three-phase three-wire system. An exception 
occurs in the special case of balanced loads, when only one wattmeter is required. 

Since the most popular power-supply system is the three-phase three-wire 
system, the two-wattmeter method of measuring power will be considered in detail. 

Typical connections for the two-wattmeter method of measuring power are 
shown in figure 8.15, in which the wattmeters have their current coils in two of the 
lines, and their potential coils are connected between the corresponding lines and 
the third line. If the reading of W 1 is P 1 and the reading of W 2 is P2 , then the total 
power taken by the load can be shown to be P1 + P2 (see below). 

The instantaneous value of power consumed in phase R of the load is 
PR = VRsiR, where VRs and iR are the instantaneous values of phase voltage and 
line current, respectively. The total instantaneous power p consumed by the system 

y 

Figure 8.15 The two-wattmeter method of measuring power in a three-phase 
three-wire system 
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is 
P = PR + PY + Pa = VRsiR + Vysiy + vasia 

and the instantaneous values of power read by W 1 and W 2 , respectively, are 

P1 = iRvRa = iR(vRs- Vas) 

p2 = iyvya = iy(vys -vas) 

The sum of the two wattmeter readings is 

P1 + P2 = iRvRs + iyvy s- VasCiR + iy) 

but, in a three-wire system, iR + iy = -ia, hence 

P1 + P2 = iRvRs + iyvys + iavas 

= total instantaneous power = p 

Measurement of power in a balanced system using two wattmeters 

201 

Figure 8.16 shows the phasor diagram of the two-wattmeter circuit in figure 8.15 
given that the load is balanced with a lagging phase angle. Since the load is 
balanced, the magnitudes of /R and /y are equal to the line current h, and the 
phase angles are equal to cp. Also, the magnitudes of the voltages across the 
potential coils are both equal to VL. The reading ofW1 in figure 8.15 is 

P1 =I VRa/R I x cos (angle between/Rand VRa) 

= VLh cos (30°- C/J) = VLh (0.866 cos cp + 0.5 sin cp) (8.16) 

Figure 8.16 Phasor diagram for the two-wattmeter method of measuring power 
when the load has a lagging power factor 
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Note If the load has a leading power factor, then equation 8.16 becomes 
P1 = VLh cos (30° + cfJ). 

The reading of W 2 is 

P2 =I VvB/Y I x cos (angle between /y and Vy 8 ) 

= VLh cos (30° + cp) = VLh (0.866 cos <P- 0.5 sin <P) (8.17) 

Note If the load has a leading power factor, equation 8.17 becomesP2 = VLh cos 
(30°- <f.l). Adding equations 8.16 and 8.17 gives 

P1 +P2 =y3VLh cos<f.l 

= total power consumed by a balanced load (8.18) 

The value of angle <P can be deduced from the readings of W 1 and W 2 as follows. 
Subtracting equation 8.17 from equation 8.16 gives 

P1 - P2 = VLh sin <P 

=(reactive VA consumed by a balanced load)/y3 (8.19) 
Hence 

Reactive VA consumed by a balanced load= Q = y3(P1 - P2 ) 

Now 

(8.20) 

Also 
1 1 

·cos <P = -- = -:---.,--
sec <P y(l + tan2 <f.l) 

(8.21) 

Special cases of balanced loads 

(i) cfJ = 60° lagging: The total power consumed is 

y3VLh cos 60° = ~3 VLh 

The reading of W 1 is 

P1 = VLh cos (30°- 60°) = VLh cos 30° = ~3 VLh 

= total power consumed by the load 
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and w2 reads 

P'2 = VLh cos (30° + 60°) = 0 

(ii) ct> > 60° lagging: The reading of W 2 is negative and W 1 gives a positive reading 
which is greater than the power consumed by the load. 

(iii) if> = 60° leading: The total power consumed is 

The reading of W 1 is 

and the reading of W 2 is 

0 0 ..J3 
p2 = VLh cos [30 + (-60 )] = 2 VLh 

= total power consumed by the load 

(iv) if> >60° leading: The reading of W1 is negative, and W2 gives a positive 
reading which is greater than the power consumed by the load. 

Example 8.6 

A balanced load of 12 kV A is connected to a three-phase three-wire system. 
Determine the readings of two wattmeters connected as shown in figure 8.15 if the 
power factor of the load is (a) unity, (b) 0.866lagging, and (c) O.Sleading. What is 
the maximum possible reading of either wattmeter, and what is the reading of each 
instrument for zero lagging power factor? 

Solution 

The total power consumed is 

kVA x power factor= 12 cos c/> kW = P 1 + P2 

Substituting equation 8.22 into equation 8.20 gives 

tanif>=v3(PI -P2 )/(12 coset>) 

or 

P 1 - P2 = 12 coset> tani/>/..J3 = 12 sinif>/V3 

(a) cos e = 1.0 (if>= 0°) 

P 1 -P2 = 12x 1 x0/..J3=0 

(8.22) 
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orP1 =P2 ,henceP1 =6kWandP2 =6kW. 

(b) cos cf> = 0.866 (lagging) (cf> = 30° lagging) 

P 1 - P2 = 12 sin 30° lv'3 = 12 x 0.5/y3 = 3.46 

and 

PI + p2 = 12 cos cf> = 12 X 0.866 = 10.392 

Solving between equations 8.23 and 8.24 for P 1 and P2 yields 

P 1 = 6.93 kW andP2 = 3.462 kW 

(c) cos cf> = 0.5 (leading) ( cf> = 60° leading) 

Note Since cf> leads, then sin cf> has a negative value. 

and 

P 1 - P2 = 12 sin (-60°)/y3 = 12 x (-0.866)/y3 

=-6kW 

P 1 +P2 = 12coscp= 12x0.5=6kW 

Solving between equations 8.25 and 8.26 yields 

P 1 =OkWandP2 =6kW 

(8.23) 

(8.24) 

(8.25) 

(8.26) 

The maximum reading on either wattmeter occurs when the current flowing in the 
current winding of the wattmeter is in phase with the voltage across the voltage 
winding. This occurs for W 1 at a phase angle of 30° lagging, and for W 2 at a phase 
angle of 30° leading. In either case the maximum reading is 6.93 kW (see solution b 
above). 

When the power factor is zero ( cf> = 90°) 

and 

12 . 0 
P 1 - P2 = v'3 sm 90 = 6.93 

Solving between equations 8.27 and 8.28 yields 

P 1 = 3.465 kW and P2 = -3.465 kW 

8.10 Measurement of Reactive VA in Three-phase Three-wire Systems 

From equation 8.19 

(8.27) 

(8.28) 
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hence the reactive VA consumed by the system is 

Q=..../3 VLh sin¢>=y3(PJ -P2) 

In the special case of a balanced load, a single wattmeter may be used to measure 
the reactive VA provided that the coil is connected in series with one line (say the 
R line) and that the potential coil is connected between the other pair of lines (the 
Y and B lines). The reading of the wattmeter is then VLh sin t/>, which value must 
be multiplied by a factor of ..../3 to give the total reactive VA consumed. 

8.11 Power Factor Correction in Three-phase Systems 

As stated in chapter 6, for a given power consumption a system with a low power 
factor draws a larger current than one with a higher power factor. Industrial 
consumers usually have a large number of induction motor drives whose starting 
power factor may be about 0.3 lagging, and whose light load power factor may be 
0.6 lagging. One method adopted to improve the power factor of lagging loads is to 
connect a three-phase capacitor bank to the terminals of the load, the V Ar rating of 
the capacitor being chosen to give an optimum overall power factor. In some cases 
it is possible to improve the power factor of the system as a whole by installing 
motor drives which draw a leading current from the power supply; synchronous 
motors and synchronous induction motors are machines of this type. 

Example 8. 7 

A star-connected three-phase 440 V, 50 Hz induction motor takes a line current of 
40 A at 0.8 power factor lagging. A three-phase delta-connected capacitor bank is 
used to raise the overall power factor to 0.9 5 lagging. Calculate the kV A rating of 
the capacitor bank, and also determine the value of the capacitance used in each 
phase of the capacitor bank. 

Solution 

A phasor diagram showing the line currents involved is given in figure 8.17. In this 
diagram, /Ll is the line current drawn by the induction motor, h 2 is the 
component of line current due to the capacitor bank, and h is the total line 
current at a power factor of 0.95 lagging. From the values given 

t/> 1 =cos-1 0.8=36°52' and '¢=cos-1 0.95=18°12' 

The quadrature component/ Q 1 of line current/ L1 is 

Io 1 = lu sin t/> = 40 x 0.6 = 24 A 

and the 'in-phase' component of lu is 

I L1 cos tP! = 40 X 0.8 = 32 A 
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Figure 8.17 

The quadrature component 10 of the total line currenth is 

10 = (/Ll cost/>) tan t/> = 32 x 0.3288 = 10.52 A 

Hence the component of current h 2 flowing into the capacitor is 

/L2 = 10 1 -10 = 24- 10.52 = 13.48 A 

The kV Ar rating of the capacitor bank is 

Q = y3 VL/L2/1000 = y3 X 440 X 13.48/1000 

= 10.27 kVAr 

If /p is the current flowing into each phase of the delta-connected capacitor bank, 
then 

/p =h2/v3 = 13.48/y3 = 7.78 A 

Now, I p = V L wC, where C is the capacitance of one phase of the capacitor, hence 

C=lp/VLw = 7.78/440 x 21T x 50 F = 56.27J,LF 

Summary of essential formulae 

Three-phase voltages: VRN = Vpf1L 

VyN = Vp/-120° = Vp(-0.5- j0.866) 

VBN = Vp/120°= Vp(-0.5 + j0.866) 

VRY = VRN- VyN 

VyB = VyN- VBN 

VBR = VBN- VRN 

Balanced three-phase supply: V L = y3 V p 
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Star connection: V L = v'3 V p and h =I p 

Three-phase four-wire system: IR + /y + / 8 =IN 

Three-phase three-wire star-connected system: 

/R +/y +/B =Q 

VsN = (VR YR + Vy Yy + V8 Y8)/(YR + Yy + YB) 

Delta or mesh connection: V L = V p and I L = v'3I p 

/R =/RY -/BR 

/y =/yB -fRY 

fs =/BR -/yB 

Three-phase balanced load: 

volt amperes: S = 3 Vplp = y'3 VLh VA 

reactive volt amperes: Q = 3 V pl p sin ¢ = v'3 V Lh sin ¢ V Ar 

power: P = 3Vplp cos¢= v'3 VLh cos¢ W 

Two-wattmeter method: 

total power= P1 + P2 

reactive VA = y'3(P 1 - P2 ) 

phase angle = ¢ = tan- 1 [y'3(P1 - Pz )/(PI + Pz)] 
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9 Transformers and Coupled 
Circuits 

9.1 Introduction 

An important feature of a.c. distribution systems is the ease with which the system 
voltage can either be increased or reduced by means of transformers. When 
transmitting a given amount of power, a high supply voltage results in a small line 
current with consequent small copper losses (/ 2R losses). Thus, when large amounts 
of power are transmitted over great distances, it is done at a very high voltage, 
typically several hundred kilovolts. In local distribution networks the line voltage 
may be 11 or 6.6 kV, and in medium and large sizes of industrial installations 
power is distributed at 3.3 kV. The voltage at which the supply is utilised depends 
on the nature of the installation, and may be at a line voltage of 3.3 kV in the case 
of large machines or 415 V in smaller machines. Intermediate voltages such as 
1.1 kV are used in some industries. 

A popular distribution voltage for domestic use in the United Kingdom is 415 V 
three-phase, which is finally connected to consumer's terminals in the form of a 
240 V single-phase supply. Portable tools in industry are frequently supplied at 
110 V, the transformer secondary having its centre-point earthed to give a voltage 
of 55 V between either line and earth. 

Transformers are both costly and bulky, and the electronics industry endeavours 
to utilise circuitry which avoids their use. Nevertheless, their use is unavoidable 
where circuits either require a non-standard supply voltage or where the circuit 
must be electrically isolated from the power supply. 

Transformers are also used as a means of changing the apparent impedance of a 
load (see section 9.3), so that the impedance of a load as 'seen' by the power supply 
is either larger or smaller than its actual value. As we saw with the maximum power 
transfer theorem (section 2.6), the load consumes its maximum power when the 
impedance of the load is equal to the impedance of the supply source. By using a 
transformer as an 'impedance matching' device, it is possible to modify the 
apparent impedance of the load, which may be a loudspeaker, so that maximum 
power may be transferred into it. 
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9.2 Principle of Operation 

A simplified sketch of a transformer is shown in figure 9.1; it consists of two 
separate windings mounted on a laminated iron core. The purpose of laminating the 
core is to reduce the magnitude of the eddy cu"ents induced in the iron by the 
magnetic flux alternations. Individual laminations are insulated from one another 
by a layer of varnish, paper, or other insulant. The winding that is energised by the 
power supply is known as the primary winding, and the winding to which the load 
is connected is the secondary winding. In the figure, both windings are on the 
vertical parts of the core, known as the limbs of the transformer. The horizontal 
parts of the core completing the magnetic circuit between the limbs are known as 
the yokes. In small transformers the core is rectangular in section, and the 
laminations are held in place by the windings or, in some cases, by tape. In medium 
and large transformers the sizes of the laminations are stepped to give an 
approximately circular section, and are clamped together by bolts which pass 
through the core but are insulated from it. 

The dot notation (see also chapter 3) applied to figure 9.1 indicates that when 
point A on the primary winding is positive with respect to point B then, in the 
secondary, point D is positive with respect to point C. Since the two windings are 
electrically isolated from one another, it is not possible to deduce the phase 
relationship between V1 and V2 until a common reference node has been selected. 
If terminals B and C are linked by the dotted connection shown in the figure, we 
see that when terminal A is positive with respect to the common link, terminal Dis 
also positive with respect to the common connection. Had the common connection 

section of 
laminated care 

• D 

s c 1 
I 
I 
I 
I 

I I 
L-------------------------J 

Figure 9.1 Basic features of a single-phase transformer 

load 
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been made between Band D (or between A and C), then the primary and secondary 
voltages would have been antiphase to one another. Thus the phase relationship 
between the voltages induced in the windings depends not only on the directions of 
the windings but also on the choice of the reference node. 

It was shown in chapter 3 (see equation 3.2) that the instantaneous value of the 
induced e.m.f., e, in a winding of N turns is 

e =N d4>/dt 

where d4>/dt is the rate of change of the flux linking with the coil. Hence 

e d4> 
-=-
N dt 

Under no-load conditions the magnetic flux links both windings, and if the flux 
waveform is sinusoidal, then the ratio 

r.m.s. value of induced e.m.f. : number of turns 

is the same in both windings. That is 

or 

-=-
£1 N1 

(9.1) 

Also, under no-load conditions the applied voltage V1 is very nearly equal to £ 1 , 

and V2 is very nearly equal to £ 2 so that 

V2 N2 
-~-

VI Nl 
(9.2) 

If the value of the secondary voltage is lower than the primary voltage (that is, 
v2 <VI), the transformer is said to have a step-down voltage ratio, and if v2 > VI 
it is said to have a step-up ratio. 

Under normal operating conditions the efficiency of power transformers is in the 
range 95-98 per cent, and the values of the input power and the output power are 
very nearly equal in value, hence 

(9.3) 

Since the primary and secondary power factors differ by very little from one 
another, then 

(9.4) 
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Combining equations 9.2 and 9.4 yields 

From equation 9.5 we see that 

V2 N2 11 
-~-~-

211 

(9.5) 

(9.6) 

That is, the number of ampere turns on the secondary winding resulting from the 
load current is balanced by an equal number of ampere turns in the primary 
winding. Thus an increase in load current produces a corresponding increase in 
primary current. 

Example 9.1 

A single-phase step-down transformer of ratio 5: I delivers a secondary current of 
55 A at a power factor of 0.9 lagging. Calculate the magnitude of the component of 
primary current resulting from the flow of load current. 

Solution 

From the data given,l2 =55 A andN2 /N1 = 1/5 = 0.2. From equation 9.6 

/ 1 = 12NdN 1 =55 x 0.2 = II A at a lagging power factor of 0.9 

9.3 The Transformer as an Impedance-level Converting Device 

In electronic circuits, transformers are sometimes used as impedance-level convert­
ing devices. Assuming that the transformer in figure 9.2 is an ideal loss-free 
transformer, then 

/2 = V2/RL 

or 

RL = V2/l2 (9.7) 

~ 

R,- v,l RL 

Figure 9.2 The transformer as an impedance-level converting device 
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For an ideal transformer 

and 

Nl 
vi=- V2 

N2 

The apparent resistance, R 1, seen by the primary winding supply source is 

V1 (N1 ) ( N1 ) (N1)2 V2 
R 1 =I:= N2 v2 x N2I2 = N2 12 

Substituting equation 9.7 into the above expression yields 

( N 1 )
2 

R1 = N 2 
xRL (9.8) 

That is, the resistance between the primary winding terminals is (NJ/N2 )2 times the 
value of the load resistance. 

Example 9.2 

A resistance of 15 n is connected to the secondary of a transformer with a 
step-down ratio of 5:1. Compute the effective resistance to flow of primary 
current. 

Solution 

NJ/N2 = 5, therefore from equation 9.8 

R 1 =5 2 xl5=375D 

9.4 E.M.F. Equation of the Transformer 

Since the magnitude of the magnetic flux in the core of the transformer varies 
sinusoidally, its equation is 

rp = rpm sin wt 

where rpm is the maximum value of the flux, and w is the angular frequency of the 
supply in rad/s. The e.m.f., e, induced in a winding of N turns on the core is 

drp 
e = N- = Nd( 1/Jm sin wt)/dt = wN 1/Jm cos wt volts 

dt 

= wNI/Jm sin (wt + 90°) volts (9.9) 
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That is to say, the maximum value of induced e.m.f., Em, is 

Em= wN<Pm (9.10) 

and the e.m.f. phasor leads the magnetic flux phasor by 90°. Since the induced 
e.m.f. waveform is sinusoidal, its r.m.s. value, E, is 

E = Em/V2 = wN<Pm/V2 = 2rr/N<Pm/V2 

= 4.44/N.Pm volts (9.11) 

The r.m.s. values of the e.m.f.s E 1 and E2 induced in the primary and secondary 
windings, respectively, are 

Example 9.3 

E1 = 4.44/Nr <Pm 

E2 = 4.44fN2 Wm 

(9.12) 

(9.13) 

The primary winding of a single-phase transformer is energised by a 230 V, 50 Hz 
supply. If the maximum value of core flux is 0.001802 Wb, the secondary winding 
has 1150 turns, and the maximum flux density is 0.36 tesla, calculate (a) the 
number of turns on the primary winding, (b) the secondary induced voltage, and 
(c) the net cross-sectional area of the core. 

Solution 

From the data provided, E 1 ~ V1 = 230 V, f= 50 Hz, <Pm = 0.001802 Wb, 
N 2 = 1150turns,,.andBm =0.36T. 

(a) From equation 9.12 

Nr =Er/4.44f4>m = 230/4.44 x50x0.001802 = 575 turns 

(b) From equation 9.13 

E2 = 4.44jN24>m = 4.44 X 50 X 1150 X 0.001802 = 460 V 

Note E2 could have been calculated from E2 =E1N2 /N1 = 230 x 1150/575 = 
460V. 

(c) Bm = 4>m/core area 

therefore 

Core area= <Pm/Bm = 0.001802/0.36 = 0.005 m2 =50 cm2 
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9.5 No-load Phasor Diagram for the Transformer Neglecting the Voltage Drop in the 
Primary Winding 

Following the usual practice when drawing phasor diagrams, the quantity common 
to all parts of the magnetic circuit is shown on the reference (horizontal) axis. In 
the transformer this quantity is the magnetic flux, as shown in figure 9.3. From 
equation 9.9, the induced e.m.f.s in both the primary and secondary windings lead 
the flux phasor by 90" and, assuming that the turns ratio is 1: 1, then E 1 = £ 2 • 

Also, since the effects of the voltage drops in the windings are neglected, V 1 =E 1 

and, since no current is drawn from the secondary, V 2 = E 2 • In a practical 
transformer the turns ratio is other than 1:1, and the value of £ 2 is£ 1N 2 /N1 • 

In order to maintain the magnetic flux in the core, the primary winding carries a 
current / 0 , known as the no-load cu"ent, which lags behind the supply voltage by 
angle ¢0 • This current is regarded as consisting of two components, namely the 
magnetising component, Imag• which lags behind V1 by 90°, and the core loss 
component, le, which is in phase with V 1 • The latter component gives rise to a 
power loss of V 1le in the core, and is known as the iron loss or core loss,P0 • Hence 

v; = E, 

Ie = /0 cos ¢ 0 

/mag =/o sin ¢o 

I 0 = y(I e 2 +I rna g 2 ) 

¢o = tan-1 Cimag/le) = cos-1 (Ie/10 ) 

Core loss =Po= V1le = V1 / 0 cos <1>0 

(a) 

(9.14) 

(b) 

Figure 9.3 No-load phasor diagrams for a single-phase transformer: (a) primary 
winding, (b) secondary winding 
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9.6 Phasor Diagram for the Transformer Under Loaded Conditions Neglecting the 
Voltage Drops in the Windings 

Suppose that an inductive load is connected to the secondary winding. The phasor 
diagram for the secondary winding is shown in figure 9.4b. The secondary current, 
I 2 , lags behind E2 by I/J2 , and a corresponding current I 1' flows in the primary 
winding to maintain ampere-turn balance, where 

I 1' = I 2N 2 /N1 

The total primary current, I 1 , is the phasor sum of I; and I 0 , see figure 9 .4. 

V, and £, 

(a) 

N 
-e-
ll) 
0 
0 

..... ~ 

(b) 

Figure 9.4 Transformer phasor diagrams for a loaded transformer (neglecting the 
voltage drops in the windings): (a) primary winding, (b) secondary 
winding 

The equivalent electrical circuit which represents the phasor diagram in 
figure 9.4 is shown in figure 9.5, in which the primary current I 1 divides into the 
no-load current I 0 and a current I 1', the latter flowing into an 'ideal' transformer 
which requires neither magnetising current nor core loss current. The core loss 
current, Ic, is assumed to flow through resistor Rc, and the magnetising current is 
assumed to flow through inductive reactance Xm. 

The values of Rc and Xm are determined from a no-load test or open-circuit 
test, in which the primary voltage V1, the primary no-load current I0 , and the 
primary no-load power (the core loss)Pc are measured. From this data 

hence 

cos c/>0 =P0 /V1Io 

Ic =/0 cos cf>o 

I mag= Io sin cf>o 

Rc = Vdlc andXm = V1/Imag 

(9.15) 
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actual transformer 

v, load 

._,....., 
'ideal' transformer 

Figure 9.5 One method of making allowances for the no-load current / 0 in the 
equivalent circuit of the transformer 

Example 9.4 

A single-phase transformer with a step-down ratio 10:1 draws a primary current of 
5.5 A at a power factor of 0.9 lagging when the secondary current is 50 A at a 
power factor of 0.95 lagging. Determine the magnitude and the power factor of the 
no-load current. Neglect the effect of the voltage drops in the windings. 

Solution 

From figure 9.4b 

r/11 = COS-I 0.9 = 25° 50' 

sin ¢ 1 = 0.4357 

¢2 = cos-1 0.95 = 18°12' 

sin ¢2 = 0.3123 

/2 cos ¢2 =50 X 0.95 = 47.5 A 

/ 2 sin ¢2 =50 x 0.3123 = 15.62 A 

The perpendicular component of 1; in the primary winding is 

1 (N2) /I cos ¢2 = Ni /2 cos ¢2 = 0.1 X 47.5 = 4.75 A 

and the horizontal component of 1; is 

1 (N2) /1 sin r/12 = N
1 

/2 cos r/12 = 0.1 x 15.62 = 1.562 A 
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The perpendicular component of I 1 is 

I1 cos c/>1' = 5.5 X 0.9 = 4.95 A 

and the horizontal component of I 1 is 

I1 sin c/>1 = 5.5 x 0.4357 = 2.4 A 

Hence the core loss (perpendicular) component of I 0 is 

Ic = I0 cos c/>0 = I 1 cos c/>1 -I; cos c/>2 = 4.95- 4.75 

=0.2A 

and the magnetising (horizontal) component of I 0 is 

From equation 9.14 

Imag =Io sin cf>o =I1 sin c/>1 -I; sin c/>2 

= 2.4 - 1.562 = 0.838 A 

Io = y(Ic 2, + Ima 1/) = y(0.22 + 0.838 2 ) = 0.861 A 

and 

cos 80 =Ic/I0 = 0.2/0.861 = 0.2323 

Example 9.5 
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In an open-circuit test on a single-phase transformer it was found that, when 200 V 
was applied to the primary winding, the no-load current was 0.7 A and the power 
consumed was 70 W. Calculate the values of Rc and Xm in the primary circuit (see 
figure 9 .5). 

Solution 

From equation 9.15 

cos c/>0 = P0 /V1I0 = 70/(200 x 0.7) = 0.5 

and 

sin c/>0 = y(l - 0.5 2 ) = 0.866 

The components of I 0 are 

Ic =I0 cos tPo = 0.7 x 0.5 = 0.35 A 

and 

Imag =Io sin cf>o = 0.7 x 0.866 = 0.606 A 
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therefore 

Rc = VJ/Ic = 200/0.35 = 571 n 

and 

Xm = VJ/Imag = 200/0.606 = 330 n 

9.7 Leakage Flux in a Transformer 

When a resistive load is connected to the secondary winding of a transformer, in the 
manner shown in figure 9.6, a current/2 flows in the load. The direction of flow of 
the secondary current can be deduced from Lenz's law (see section 3.2), which 
states that the current circulates in a direction which opposes the change of flux 
causing the secondary current. With the instantaneous direction of flow of the 
primary current shown in the figure, the useful magnetic flux 4> circulates in a 
clockwise direction around the core. It follows from Lenz's law that the secondary 
current circulates in a direction to produce a flux cpL 2 which opposes the main flux. 
The magnitude of this flux is proportional to the value of the load current. 

The net result is that the main flux tends to be reduced, and with it the induced 
'back' e.m.f. E\ in the primary winding also tends to reduce. Consequently, the 
primary current increases to a value which produces ampere-turn balance on the 
two windings. As a result, the useful flux 4> remains substantially constant over the 
working load range of the transformer, and the component of current in 
the primary due to the load causes a leakage flux cp L 1 to be established around 
the primary coil. Flux ct>L 2 associated with the flow of load current in the secondary 
is known as the secondary winding leakage flux. 

Since flux cpL 1 links only with the primary winding, it does not contribute to 

main flux r1J 

/ 
_..------~----

' ' I \ 
I I 
I 

11 / I ' ' I \ I / \ 
I I 

/ \ 12 \ 
I I 

I I I 

I I I I 

v, 1 • • ,z,) t load I<Z>u I 
I I 
I I 

I I I 
I I \ I \ 

' I \ / I \ 
I 

,_ --" 
I 
I 
\ I 

' / 

Figure 9.6 Leakage flux paths 
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'ideal' transformer 
with no leakage flux 
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Figure 9.7 Representation of leakage reactances on the equivalent circuit of the 
transformer 

the output voltage, and has the effect of inducing a further 'back' e.m.f. in the 
primary winding. Consequently the voltage drop caused by the leakage flux 4>L 1 

can be regarded as being produced by a leakage reactance, X1 in series with the 
primary winding, shown in figure 9. 7. Also, the voltage drop associated with the 
secondary leakage flux can also be regarded as being produced by a leakage 
reactance X2 in series with the secondary winding. 

9.8 Approximate Equivalent Circuit of a Single-phase Transformer 

In addition to the voltage drops due to flow of current in X 1 and X 2 , current also 
flows through the resistances R 1 and R 2 of the primary and secondary windings, 
respectively. An approximate equivalent circuit of the transformer is shown in 
figure 9.8, in which Z 1 is the primary winding impedance and includes the 
resistance and the leakage reactance of the primary winding. The secondary winding 
impedance is Z2 • This diagram neglects the effects of the primary no-load current 
(see figures 9.5 and 9.9). In power transformers the values of X 1 and X 2 are about 
three to eight times the values of R 1 and R 2 , respectively. 

v, 

'ideal' transformer 

Figure 9.8 Approximate equivalent circuit of the transformer 
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actual transformer 

~ 
'ideal' transformer 

Figure 9.9 Complete equivalent circuit of the single-phase transformer 

9.9 Complete Equivalent Circuit of a Single-phase Transformer 

The operation of a practical power transformer can be expressed in terms of the 
equivalent circuit in figure 9.9, in which the winding impedances and the effects of 
the no-load current are accounted for by components connected external to an 
'ideal' transformer, whose iron circuit has an infmite permeability and requires no 
magnetising current. 

The phasor diagram for the complete equivalent circuit is shown in figure 9.10. 
The secondary terminal voltage is evaluated by solving the equation 

V2 =E2 -I2Z2 =E2 -/2(R2 +jX2) 

where / 2Z2 is the voltage drop in the secondary winding impedance. This 
subtraction is performed in the manner shown in the secondary circuit phasor 
diagram, figure 9.10b, in which -12R 2 is antiphase to / 2 , and -/2X2 leads the 
phasor ( -/2 ) by 90°. The primary current is evaluated from the phasor sum of I 1' 
and / 0 • The equation for the primary terminal voltage is 

Vt =Et +ItZt =Et +lt(Rt +jXt) 

The above addition is performed on the phasor diagram for the primary circuit, 
figure 9 .lOa. 

9.10 Simplified Equivalent Circuit of a Single-phase Transformer 

The complete equivalent circuit in figure 9.9 can, in many instances, be simplified 
to one of the circuits in figure 9 .11. Since the value of the no-load current is usually 
less than about 5 per cent of the full-load primary current, its effects may be 
neglected. Hence the parallel circuit containing Rc and Xm (see figure 9.9) may be 
omitted without significant loss of accuracy. 

Moreover, it is theoretically possible to refer all the resistance and all the 
reactance of the transformer into one or other of the windings, so that the 
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Figure 9.10 Phasor diagram for the complete equivalent circuit: (a) primary 
circuit, (b) secondary circuit 

remaining winding has neither resistance nor reactance. In figure 9.11 a, R E 1 is the 
effective resistance of the whole transformer referred to the primary winding, 
where 

(9.16) 

That is, RE 1 is the sum of the resistance R 1 of the primary winding and a resistance 
R;, which is the resistance of the secohdary winding referred to the primary 

(a) 

'---r---' 

ideal transformer 
'---r---' 

ideal transformer 

(b) 

Figure 9.11 Simplified equivalent circuit of the single-phase transformer 
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winding. If the referred value of resistance R~ is to produce the same effect in the 
primary winding as R 2 does in the secondary winding, then each must absorb the 
same amount of power in the circuit. That is 

I1 2R; =I2 2R2 

or 

(9.17) 

Hence 

(9.18) 

Also, the effective reactance of the transformer referred to the primary winding 
is 

(9.19) 

where X; is the reactance of the secondary winding refe"ed to the primary 
winding. For X~ to produce the same effect in the primary winding as X 2 in the 
secondary winding, then each must absorb the same number of reactive volt 
amperes. The voltage across X~ when carrying I 1 is I 1 X~ , and the voltage across X 2 

when carrying I 2 is I 2 X 2 • Equating the reactive volt amperes consumed by the two 
elements gives 

or 

(9.20) 

hence 

(9.21) 

A similar argument can be advanced when referring the values of the primary 
winding of the transformer to the secondary (see figure 9.llb), in which case 

Example 9.6 

RE2 =R2 +R~ =R2 +R1(N2/Nd l 
xE2 = x2 +x; =X2 +X1(N2/Nt)2 

(9.22) 

A single-phase transformer with a voltage step-down ratio of 3.3 kV/415 V has 
primary and secondary winding resistances of0.8 Q and 0.0125 Q respectively, the 
corresponding leakage reactances being 4 Q and 0.05 Q. If the load is equivalent to 
a coil of resistance 5 Q and inductive reactance 3.75 Q, determine the value of the 
secondary winding terminal voltage and the power consumed by the load. 
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Solution 

Since the results required above refer to the secondary winding, we use the 
simplified equivalent circuit in figure 9.12, in which 

RE2 = R 2 + R 1 (N2/NI)2 = 0.0125 + 0.8(415/3300? 

= o.0251 n 

XE2 =X2 +X!(N2/Nd2 =0.05 +4(415/3300)2 

=0.1132Q 

The total impedance in the secondary circuit is 

and 

Z = ZE2 + ZL = (5 + RE2) + j(3.75 + XE2) = 5.0215 + j3.8632 Q 

= 6.338/37°33' n 

/ 2 = 415l1t /Z = 415l1t /6.338/37°33' = 65.48/-37°33' A 

The value of the load impedance is 

Therefore 

ZL = 5 + j3.75 = 6.25/36°52' Q 

V2 =/2ZL = 65.48/-37°3~ x 6.25/36°52' 

= 409.25/-0° 41' v 

The power consumed by the load is 

h =/2 2RL = 65.482 X 5 = 21 438 w = 21.438 kW 

3300 v 

Figure 9.12 
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9.11 Per-unit Voltage Regulation 

The per-unit voltage regulation of a transformer is the variation in the secondary 
voltage between no-load and full-load at a given power factor expressed as a 
proportion of the no-load secondary voltage. The primary voltage being meanwhile 
maintained at the rated voltage. 

no-load output voltage - full-load output voltage 
Per-unit voltage regulation= 1 d 1 no- oa output vo tage 

(9.23) 

(9.24) 

The results of equations 9.23 and 9.24 are in a per-unit (p.u.) or dimensionless 
form. Should the results be required in a per cent form, the p.u. result is multiplied 
by 100. The per-unit voltage regulation of the transformer in example 9.6 is 

1 . - 3300(415/3300)- 409.25 
p.u. voltage regu atwn- 3300(41513300) 

415-409.25 
----- = 0.0139 p.u. or 1.39 per cent 

415 

The per-unit voltage regulation for a lagging load is computed in terms of the 
parameters on the phasor diagram in figure 9.13 for the secondary winding of a 
transformer, as follows 

E; = y((V2 + l2RE 2 cos¢>+ l2XE 2 sin ¢>)2 + (I2XE2 cos¢> -l2RE2 sin ¢>)2 ] 

(9.25) 

From equation 9.24, the per-unit voltage regulation is 

per-unit voltage regulation= (E~ - V2 )/E~ (9.26) 

The exact expression forE~ may be simplified in many cases since the quadrature 
terms in equation 9.25 are small in value when compared with the in-phase terms 
(see example 9.7). Hence 

(9.27) 
and 

. . 12RE 2 cos¢>+ 12 XE 2 sin¢> 
per-umt voltage regulatwn = , 

£2 
(9.28) 

The equivalent expression in terms of the primary winding quantities is 

. . 11 R E 1 cos ¢> + 11 X E 1 sin ¢> per-umt voltage regulation= _:..._-='---'-----'----.!:C!.----'-
V1 
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=I2 XE 2 sin 4> 

Figure 9.13 Determination of the voltage regulation of a transformer 
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Note For a load with a leading power factor, the sign associated with/2 XE 2 in 
equations 9.25, 9.27, and 9.28 becomes negative, 

The load phase angle which gives maximum voltage regulation can be determined 
by differentiating equation 9.28 with respect to¢ and equating the result to zero. Its 
value is found to be a lagging phase angle which is equal to the angle in the internal 
impedance triangle of the transformer, that is, 1/J = tan- 1(XE 2 /RE 2 ). For leading 
loads the voltage regulation first reduces, then becomes zero and finally becomes 
negative when the output voltage rises above the no-load voltage. For zero 
regulation to occur the numerator of equation 9.28 is zero, and occurs when 

12RE 2 cos 1/J + 12 XE 2 sin 1/J = 0 

or when 

that is, it occurs when the load is capacitive. 

Example 9. 7 

A transformer with resistance and reactance values referred to the secondary 
winding of 0.512 n and 1.173 n, respectively, supplies a load current of 12.5 A at 
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a lagging power factor of 0.8. If the no-load secondary voltage is 400 V, determine 
the per-unit voltage regulation by means of (a) the exact expression, and (b) the 
approximate expression, equation 9.28. 

Solution 

From the data given,£~ = 400 V, RE 2 = 0.512 n, XE 2 = 1.173 n, 12 = 12.5 A, cos 
lfi2 = 0.8 (therefore sin 4> 2 = 0.6). From the above 

RE2 cos <P2 = 0.409 RE2 sin rp2 = 0.307 

XE2 cos 1/lz = 0.938 XE 2 sin l/l2 = 0.704 

(a) From equation 9.25 

4002 = [V2 + 12.5(0.409 + 0.704)] 2 + [12.5(0.938- 0.30=7)] 2 

or 

V2 = 385.9 v 
per-unit voltage regulation= (400- 385.9)/400 = 0.035 p.u. 

(!>) From equation 9.28 

per-unit voltage regulation= 12.5(0.409 + 0.704)/400 

= 0.035 p.u. 

9.12 Per-unit Resistance and Leakage Reactance Voltage Drops 

It is sometimes convenient to express the full-load voltage drops occurring in a 
transformer as a fraction (usually in per unit or per cent) of the no-load terminal 
voltage. If 

then 

and 

IF L 1 = nominal full-load primary current 

hL2 =nominal full-load secondary current 

V1 =nominal primary voltage 

E~ =nominal no-load secondary voltage 

per-unit resistance drop= IFL 1REdV: l 
= IFL2RE2!E2 

per-unit reactance drop =JFLIXEtfV11 l 
=IFL2RE2/E2 

(9.29) 

(9.30) 
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Example 9.8 

Calculate the values of the per-unit resistance and reactance drops in example 9.7. 

Solution 

From the data given in the problem, /FL2 = 12.5 A, RE2 = 0.512 n, XE2 = 
1.173 n, E~ = 400 V. From equation 9.29 

per-unit resistance drop= 12.5 x 0.512/400 = 0.016 p.u. 

and from equation 9.30 

per-unit reactance drop= 12.5 x 1.173/400= 0.037 p.u. 

9.13 Transformer Efficiency 

The per-unit efficiency of a transformer is given by the expression 

'T1 =output power= __ ou_t~p_u_t~p_ow_er __ 
input power output power + losses 

= input power - losses = 1 _ losses 
input power input power 

The power losses in the transformer are divided into two main groups, namely 

(a) losses which vary with the load current 
(b) losses which vary with the core flux 

(9.31) 

The first group consists of the copper losses, Pc, which for a two-winding 
transformer are 

(9.32) 

The second group of losses, group (b) above, can be further subdivided into the 
hysteresis loss, Ph, and the eddy cu"ent loss, Pe. The hysteresis loss, discussed in 
section 3.14, is given by the relationship 

Ph = kfBm n watts/m3 

where k is a constant, f is the supply frequency, Bm is the maximum value of flux 
density in the core, and n is a number whose value lies between 1.6 and 2. 

The eddy current loss is due to flow of eddy currents in the magnetic material of 
the core. This loss is reduced to an economic minimum value by using a laminated 
core of high resistivity material. This loss is given by the expression 

Pe = Kf'l Bm 2 watts/m3 

where K is a constant, and f and Bm are defined above. 
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The core loss, P 0 , is 

Po =Ph +Pe 

Since both[ and Bm are constant for a given supply frequency and transformer, the 
iron loss is approximately constant over the working load range of the transformer. 
The value of P0 is determined by measuring the no-load power consumed by the 
transformer (see also sections 9.6 and 9.16). 

All-day efficiency 

In many instances the load connected to the transformer varies over a 24-hour 
period, and its efficiency will vary from a low value under light-load conditions to a 
high value at higher values of load. In these applications the instantaneous 
efficiency expressed by equation 9.31 may be less important that its al/-day 
efficiency, which is the ratio of the output energy to the input energy of a 24-hour 
period. 

output energy during 24 hours 
All-day efficiency = -~--~---=----­

input energy during 24 hours 

9.14 Conditions for Maximum Efficiency 

The per-unit efficiency at load current 12 is 

output power V212 cos C/12 
11 = = inputpower V212 coscfh+l22 RE 2 +Po 

V2 cos C/12 =-----=--_.:...::___ __ 
V2 cos C/12 + l2RE2 + Po/12 

(9.33) 

where 12 2 RE 2 is the total copper loss of the transformer referred to the secondary 
winding. Maximum efficiency occurs when df//d/2 = 0, and the condition for its 
occurrence is deduced by differentiating equation 9.33 with respect to / 2 • Since 
V2 and cos cp 2 are constant for a given load, the condition for maximum efficiency 
occurs when the denominator of equation 9.33 is a minimum, that is, when 

or when 

(9.34) 

that is 

that is, when 

copper losses = iron losses (9.35) 
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To verify that expression 9.35 gives the minimum value to the denominator of 
equation 9.33, the expression on the left-hand side of equation 9.34 is 
differentiated with respect to 12 , giving a solution of 2P0 /l2 •. Since this has a 
positive value, then expression 9.35 is the condition for maximum efficiency to 
occur. 

9.15 Effect of Load Current on the Transformer Copper Loss 

The transformer copper losses are proportional to (current)2 , and doubling the load 
current causes the copper losses to quadruple. 

Since the supply voltage remains approximately constant, then 

(9.36) 

hence 

copper losses a: (volt amperes consumed by the load)• (9.37) 

Example 9.9 

A 40 kV A, 4000/400 V single-phase transformer has a core loss of 450 W and a 
full-load copper loss of 850 W. For a power factor of 0.8 lagging, calculate (a) the 
full-load efficiency, (b) the maximum efficiency and the value of primary current at 
which it occurs. Determine (c) the efficiency of the transformer when supplying a 
load of 20 kV A at 0.8 power factor lagging. 

Solution 

(a) Total losses at full-load= 450 + 850 = 1300 W 

Output power= 40 x 0.8 = 32 kW 

Hence 

losses 1.3 0 6 17 = 1 - = 1 - = 1 - 0.039 = .9 1 p.u. 
input power 32 + 1.3 

(b) For maximum efficiency, copper losses= iron losses, hence 

total losses = 2 x iron losses = 900 W 

From equation 9.37 

copper loss at maximum efficiency = (VA for maximum efficiency)2 

copper loss at full load VA for full load 

= (current for maximum efficiency) 2 

full-load current 
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and the full-load primary current is 

IFL = 40 000/4000 = 10 A 

hence the primary current which gives maximum efficiency is 

IFLy(450/850)= 7.28A 

The input power at this current is 

Viii cos 1/> = 4000 X 7.28 X 0.8 = 23 300 w = 23.3 kW 

and the value of the maximum efficiency is 

T/ = 1 _ _ losses = 1 _ 0.9 
input power 23.3 

= 0.9614 p.u. 

(c) From equation 9.37 

full-load copper loss = (40)2 = 4 
copper loss at 20 kV A 20 

Hence 

copper loss at 20 kVA = 850/4 = 212.5 W = 0.2125 kW 

At this load the output power is 20 x 0.8 = 16 kW 

losses 0.45 + 0.2125 
Efficiency = 1 - = 1 - -------

input power 16 + 0.45 + 0.2125 

= 0.9602 p.u. 

9.16 Open-circuit and Short-circuit Tests 

In order to determine the values of the parameters Rc and Xm in figure 9.9, and 
R E and X E in figure 9.11, tests must be carried out on the transformer. The 
open-circuit and the short-circuit tests described below enable these parameters to 
be evaluated, the results also permitting the efficiency and the voltage regulation to 
be computed. 

Open-circuit test 

The open-circuit test (or no-load test) was discussed in section 9.6 in connection 
with the determination of the parameters Rc and Xm. The connections for the test 
are shown in figure 9.14, in which the transformer is energised at its rated voltage, 
V 1 , and the values of the input current I 0 and input power, P 0 , together with the 
value of the secondary voltage V2 are measured. To reduce the possibility of errors 
in the measurements, the primary winding voltmeter is connected on the 'mains' 
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v 

Figure 9.14 The open-circuit test 

side of the wattmeter, and the ammeter is on the 'load' side. These connections 
prevent the power consumed by the voltmeter being measured, and also prevent the 
current drawn by the wattmeter voltage coil being measured by the ammeter. The 
open-circuit power factor is 

and 

Ic=/0 cosc/>0 also Imag=/0 sincp0 

therefore 

(9.38) 

and 

(9.39) 

Short-circuit test 

In the short-circuit test, figure 9.15, one winding is short-circuited and the voltage 
applied to the other winding is increased from zero until full-load current flows. 
Readings of the short-circuit current, / 18c, the primary voltage, V1sc. and the 
input power, Psc. are noted. The connections shown in figure 9.15 are used to 
minimise sources of error in measuring the quantities concerned. Since the 
excitation voltage is low (typically about 10 per cent of the nominal supply 
voltage), the core losses are small and the reading Psc of the wattmeter are taken to 
be equal to the full-load copper loss. The short-circuit power factor is 

coscf>sc =Psc/(Vtscltsc) 

and the impedance between the primary terminals is 

Vtsc 
ZEl =-1- =ZEtfr!Jsc =REl +jXEl 

lSC 

(9.40) 

(9.41) 
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low voltage 
a. c. supply 

Figure 9.15 The short-circuit test 

The values of the primary and the secondary winding resistances can be separated 
by d.c. tests on the individual windings, but it is impossible to separate the values 
of the primary and secondary leakage reactances. 

9.17 Determination of the Efficiency and the Voltage Regulation from the 
Open-Circuit and Short-circuit Tests 

Efficiency 

Total losses= copper loss+ iron loss= Psc + P0 

At a load power factor cos 1/>, the full-load efficiency is 

rated VA x cos 1/> 

(rated VA x cos 1/>) + Psc +Po 
p.u. 

For any other VA consumption, say (V A)2 , the efficiency is 

(VA)2 x cos 1/> 

[(VA)2 cos 1/>] + { [(VA)z/rated VA] 2 x Psc} + P0 

Voltage regulation 

(9.42) 

(9.43) 

From equation 9.41, the magnitude of the impedance of the transformer referred 
to the primary winding is 

ZEI =VIse/lise 

and the total resistance referred to the primary winding is 

REI = Psc/IJ sc 2 
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hence 

XE1 = ../(ZEl 2 - REl 2 ) 

and the primary winding full-load current is / 1 = / 1sc· From the work on voltage 
regulation, for a current / 1 at a lagging phase angle¢ 

p.u. voltage regulation= (/1RE 1 cos 1/> + /1XE 1 sin rJ>)/V1 (9.44) 

Example 9.10 

The results of open-circuit and short-circuit tests carried out on the same winding 
of a 3.5 kV A single phase transformer are as follows 

Open-circuit: current 1.2 A, voltage 200 V, power 24 W 
Short-circuit: current 17.5 A, voltage 6.4 V, power 28 W 

Determine, for a primary voltage of 200 V and a load power factor of 0.8 lagging 
(a) the efficiency of the transformer at full-load, and (b) the per-unit voltage 
regulation. 

Solution 

(a) From equation 9.42 

(b) 

11 =rated VA x cos 1/>1 [(rated VA x cos 1/>) + Psc + P0 ] 

= 3500 X 0.8/[(3500 X 0.8) + 28 + 24) = 0.982 p.U. 

ZE1 = Vlsc/l1sc = 6.4/17.5 = 0.366 Q 

RE1 = Psc/l1sc• = 28/17.5" = 0.091 Q 

XE1 = ..j(ZE1 2 - RE1 2 ) = ../(0.3662 - 0.091 2 ) = 0.354 Q 

The full-load current is 3500/200 = 17.5 A, hence 

p.u. voltage regulation= / 1 (RE 1 cos cp + XE 1 sin cp)/V1 

9.18 Transformer Construction 

= 17.5 [(0.091 X 0.8) + (0.354 X 0.6)] /200 

= 0.0245 p.u. 

The preceding work on the transformer equivalent circuit has illustrated the 
desirability of reducing the leakage reactance of the transformer. The principal 
types of magnetic circuit and winding arrangements used in power transformers are 
described below. 
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l.v. winding 

h.v. winding 
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I 
Figure 9.16 (a) Core type construction and (b) shell type construction 

Magnetic circuit 

The principal types of magnetic circuit in use are the core type and the shell type, 
illustratea in figures 9.16a and b, respectively. In the core type, one-half of each 
winding is associated with each limb, the magnetic circuit having a uniform 
cross-sectional area. In the shell type, both windings are on the centre limb, which 
has twice the cross-sectional area of each of the outer limbs. The object of both 
types of core construction is to place the windings into intimate contact with one 
another so as to reduce the leakage flux. 

Windings 

The winding arrangements used in power transformers generally take one of the 
two forms in figure 9.17. In the concentric construction, figure 9.17a, the low 
voltage winding is placed nearer to the iron core. In the sandwich construction, 
figure 9.17b, the high voltage winding is sandwiched between the two halves of the 
low voltage winding. 

In large transformers, and also in some small ones, ventilation spaces are left in 
the windings to allow circulation space for the coolant, which is usually either air or 
oil. 

9.19 Auto-transformers 

An auto-transformer has a single winding, part of which is common to both the 
primary and secondary circuits, as shown in figure 9.18. As with all transformers, 
ampere-tum balance is maintained between the windings, and the number of volts 
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Figure 9.17 (a) Concentric winding construction and (b) sandwich winding 
construction 
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Figure 9.18 The auto-transformer 
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per turn is the same on each winding. Hence 

VI Nl /2 
(9.45) 

An advantage of the auto-transformer over the double-wound transformer, that is, a 
transformer with electrically isolated windings, is that the value of the secondary 
current has a lower value than that which would flow in an equivalent 
double-wound transformer. The current flowing in the lower half of the winding is 
(/2 -It), which is less than current / 2 that flows in the load. This results in not 
only a saving in the amount of copper required in winding the transformer, but also 
in a reduction in the copper loss and an increase in efficiency. The greatest 
advantages are obtained when the ratio V2 /V1 approaches unity. Offset against this 
is the fact that in auto-transformer circuits the primary and secondary circuits are 
not electrically isolated from one another. 

Auto-transformers are used where the features listed above are advantageous, 
that is, in systems where the primary and secondary voltages are similar in 
magnitude to one another, and for use in induction motor starters. 

9.20 Current Transformers 

When measuring large values of alternating current, it is more convenient to 
'transform' the magnitude of the current to a low value, in the range 0-5 A, than it 
is to use an instrument specially designed to measure the current directly. 

One form of current transformer (C.T.) is shown in figure 9.19, in which the 

primary 

\ 
/ 

laminated core 

1- - - -
I 

v v v 

secondary 

!2 

A 

Figure 9.19 A basic form of current transformer 
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primary winding consists of either a few turns of very heavy wire or is simply a 
conductor passing through the centre of the magnetic circuit. The secondary circuit 
consists of many turns of fme wire, the secondary current rating usually being 5 A. 
In operation, the C.T. secondary winding should either have an ammeter connected 
between its terminals or it should be short-circuited. Should the secondary become 
open-circuited, ampere-turn balance on the core is no longer maintained and the 
core flux rises to a very high value. The consequence is that a dangerously high 
voltage is induced in the secondary winding, and also that the iron circuit dissipates 
a considerable amount of energy (resulting from the high value of core flux) and 
becomes very hot. 

9.21 Polyphase Transformers 

The majority of polyphase power transformers employ a core type of magnetic 
circuit construction, as shown in figure 9.20a. The transformer shown needs only 
three limbs, and is more economic in use than three separate single-phase 
transformers. Many different types of winding interconnection are possible and, in 
the case shown, the primary winding is delta-connected and the secondary is 
star-connected- see also figure 9.20b. 

The general theory of the transformer outlined in earlier sections is applicable to 
three-phase transformers if we note that, in general, the relationships apply to each 
limb (that is, each phase) of the transformer. Thus, for limb 1 of the transformer in 
figure 9.20a 

(9.46) 

Thus, when referring to the turns ratio of a three-phase transformer we mean the 
turns ratio per limb. 

Example 9.11 

A balanced three-phase load consumes 500 kW at a power factor of 0.8 lagging, and 
is supplied from the secondary of a 33 kV I 11 kV delta-star transformer. Calculate 

(a) the value of the line current drawn by the load 
(b) the primary winding line current 
(c) the primary winding phase current 
(d) the secondary phase voltage 
(e) the turns ratio of the transformer 
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Figure 9.20 A three-phase core-type delta-star transformer 

Solution 

If V L2 and /L2 are the values of the secondary line voltage and current, 
respectively, then 

(a) 
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or 

h2 =P/y3 VL2 cos ct>= 500 OOO/y3 X 11000 X 0.8 = 32.8 A 

(b) Assuming the transformer to be 100 per cent efficient, then the apparent 
power consumed by the load is equal to the apparent power delivered to the 
primary winding. 

or 

ILl= VL2ILlfVLl = 11000 x 32.8/33000 = 10.93 A 

where VLl and ILl are the values of the primary line voltage and current, 
respectively. 

(c) If the secondary phase voltage is V P2, then 

v P2 = v L2/Y3 = 11000/y3 = 6351 v 
(d) Since the primary winding is delta-connected, then Vp 1 = V Ll = 33000 V. 

From equation 9.46 

turns ratio =NdN2 = VpJ!Vp 2 = 33000/6351 = 5.196:1 

Note the turns ratio can also be calculated as follows 

NdN2 =Ip2fipt =h2/(ILl/y3) = 32.8/(10.93/y3) 

= 5.196:1 

9.22 Coupled Circuits 

The transformers considered so far have had their windings magnetically closely 
coupled, and it has been assumed that the coefficient of magnetic coupling is unity. 
Many forms of circuit involve coils that are loosely coupled, having a coefficient of 
magnetic coupling with a value of less ·than unity. Typical examples of this are 
found in radio, television, and telecommunications equipment. 

The general case is illustrated in figure 9.21, in which two coils are magnetically 
coupled together, the mutual inductance existing between the two coils being M 

Figure 9.21 Magnetically coupled circuits 



240 Electrical Circuits and Systems 

A F A F 

11 

B G B G 

~) (~ 

Figure 9.22 E.m.f.s induced in coupled circuits 

With the coupling shown, when current enters terminal A of L 1 , the induced e.m.f. 
in coil L 2 is such as to make point F instantaneously positive with respect to point 
G, and current I 2 flows out of terminal F. The circuit is analysed by applying the 
principle of the 'dot' notation outlined in chapter 3. 

If we consider coils L 1 and L 2 independently, shown in figure 9.22a, it is found 
to be possible to replace the mutual coupling between the two coils by a voltage 
generator in series with each coil, the magnitude of each generator being 

jwMx (current producing the induced e.m.f.} 

Thus, a voltage generator of magnitude jwMI 2 is included in series with winding L 1 , 

and a generator of magnitude jwMI 1 is included in series with winding L2 • The 
direction in which the induced e.m.f. acts is deduced by applying the dot notation 
principle as follows. According to this notation, if a current enters a terminal 
marked with a 'dot' then the induced e.m.f. in all the coupled coils is such that it 
causes the ends of those coils marked with dots to have an instantaneous positive 
polarity. If current leaves a terminal marked with a 'dot', then the ends of the other 
coupled coils marked with dots become instantaneously negative. 

Since I 1 enters terminal A (marked with a dot}, then the induced e.m.f. jwMI1 

in coil L 2 causes point F (also marked with a dot) to be positive with respect to 
point G. Also, since I 2 leaves terminal F, then the induced e.m.f. jwMI 2 in coil L 1 

causes terminal A on the primary winding to be negative with respect to terminal B. 
The resulting directions of induced e.m.f. are as shown in figure 9.22b. The 
completed equivalent circuit of figure 9.21 is shown in figure 9.23. 

The mesh equation for the primary circuit of figure 9.23 is 

(9.47} 
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Figure 9.23 Equivalent electrical circuits of two magnetically coupled circuits 

=/1Z11 - jwMiz 

and for the secondary winding is 

0 = -jwM/1 + lz[ Rz + j(wLz - W~z)] 
= -jwM/1 + lzZ2 2 

(9.48) 

(9.49) 

(9.50) 

where Z 11 and Z 2 2 are described as the selfimpedances of the primary and 
secondary meshes, respectively. Solving for / 2 from equation 9.50 yields 

/2 = jwM/1 /Z2 2 

and for V 1 between equations 9.48 and 9.50 gives 

V1 =/1(Z11 +w2M 2 /Z22 ) 

Example 9.12 

(9.51) 

(9.52) 

A circuit of the type in figure 9.21 is energised by a supply of 100 Vat a frequency 
of 106 /2rr Hz, the circuit values being R 1 = 20 n, L 1 = 200J.LH, C1 = 1.25 nF, 
R 2 = 10 n, L 2 = 100 J.LH, C2 = 2.5 nF, and M = 75 J.LH. Determine the effective 
values of primary resistance and reactance, and also calculate the values of the 
primary and secondary currents. Evaluate also the coefficient of magnetic coupling 
between the coils. 

Solution 

From equations 9.47 and 9.48 

Z11 =R1 +j(wLI --1-)=20+j[(106 x200x 10-6 )- 6 
1 _9 ] 

WC1 10 X 1.25 X 10 

= 20- j600 n 
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From equations 9.49 and 9.50 

z22 =R2 + j(wL2- - 1-)= 10 + jr(106 X 100 X 10-6)- 6 
1 

-9] 
WC2 l 10 X 2.5 X 10 

= 10- j300 n 
Also, from equation 9.52 

Hence 

Input impedance= V1 /11 = Z 11 + w2 M2 /Z2 2 

= (20- j600) + (106 ) 2 (75 x w-6 ) 2 /(lo- j300) 

= 20.63 - j581.25 

Effective primary resistance= 20.63 n 
Effective primary reactance = -j581.25 n 

Current 11 is computed from equation 9.52 

11 = V1 /primary input impedance 

= 100/(20.63 - j581.25) ~ j0.172 A= 0.172!90° A 

and from equation 9.50 

l2 = jwM/1 /Z2 2 = j106 X 75 X 10-6 X j0.172/(10- j300) 

~ -j0.0427 A = 0.0427 /-90° A 

and the coupling coefficient k is 

k = M/y(LtL2) = 75 x 10-6 /y(200 X 10-6 x 100 X 10-6 ) 

=0.53 

Summary of Essential Formulae 

General relationships: 

Input impedance with a resistive load: R 1 = RL(N1 /N2 ) 2 

EMF. equation: E 1 = 4.44 fNt cJ> m 

E2 = 4.44 fN2 cJ> m 

No-load current: 10 = lc +I mag= Io /.!P.Q 

where / 0 = y(/~ + /~ag) and r/Jo =tan -t (Imag/Ic) 

Equivalent resistance, referred to primary: 

referred to secondary: 

REt= Rt + R2(N1 /N2)2 

RE2 =R2 + R1(N2/Nd 
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Equivalent leakage reactance, refe"ed to primary: XE1 = X1 + X2(NtfN2)2 

referred to secondary: XE2 = x2 + Xt (N2/Nl )2 

Per-unit voltage regulation: 
. no-load output voltage - full-load output voltage 

p.u. regulatiOn= ----~---=------_o_--~ 
no-load output voltage 

I2 (RE2 cos <P + XE2 sin <P) 
~-=--'-----"=---'-----==--____:__:__ 

no-load output voltage 

Per-unit efficiency: T/ =power output/power input 

= V2I2 cos ¢2/(V2I2 cos ¢2 + I 2 2 RE 2 + P0 

energy output during 24 hours 
ali-day efficiency=----------­

energy input during 24 hours 

Open-circuit test: cos <Po = P 0 IV 1 I o 

Short-circuit test: 

Ic = I 0 cos <Po 

I mag = I 0 sin <Po 

Rc = Vi2 /Po 

Xm = V1/Imag 

ZEt = Vtsc/Itsc 

REt = Pscfit sc 2 

XEI =y(ZE/ -REt 2 ) 

Efficiency of a transformer providing an output of (V A)2 at a power factor of 
cos¢: 

T/ = (VA)2 cos <P/[(VAh cos <P + ( (VAh )
2 
Psc + P0 ] 

rated VA 

Polyphase transformer, per limb (or phase): Vp1 N 1 Ip2 -=--=-

Coupled circuit, mutually induced e.m.f.: E2 = jwMI1 



JO Transients in RL and RC 
Circuits 

After a circuit is connected to an electrical supply, it takes a little time for the 
currents and voltages associated with each component to settle down to their 
steady-state values. The length of this settling period is known as the transient 
period of operation, the transients dying away in a period of time known as the 
settling-time. In this chapter we are concerned with transients occurring in RL and 
RC circuits. 

I 0.1 Transients in RL Series Circuits 

Rise of current 

Consider the inductive circuit in figure 1 0.1. When the switch is closed, the loop 
equation is 

di 
E=iR+L­

dt 
(10.1) 

where i is the instantaneous value of the circuit current. Equation 10.1 is the 
differential equation of the circuit, and its solution gives an expression for the 
instantaneous value of current. Equation 10.1 is rewritten as follows 

so that 

R di 
-dt=-­
L E 

-- i 
R 

fR f di zdt = ~- i 

Integrating both sides of the equation yields 

~t =- lnt(~- i) + ln A 

tin is sometimes written loge, where e (2.71828) is the base of natural logarithms. 

(10.2) 

(10.3) 
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L 

Figure 10.1 RL series circuit energised by a d.c. source 

where InA is the constant of integration, whose value is determined from a 
knowledge of the conditions in the circuit when t = 0, that is, the initial conditions 
in the circuit. If the initial value of the current is zero, that is, i = 0 when t = 0, then 
substituting these values into equation 10.3 gives 

or 

E 
0=-ln-+lnA 

R 

A =E/R 

Substituting the above value of A into equation 10.3 yields 

or 

Solving for i gives 

Rt =- ln(f!_- i) +In I!_= In( E/R ) 
L R . R . (E/R) - i 

e-RtfL = E/R 
(E/R)- i 

E i =_(I _ e-R tfL) 
R 

The instantaneous voltage across resistor R is 

VR =iR =£(1-e-RtfL) 

and the instantaneous voltage across inductor L is 

VL =£- VR =Ee-Rt/L 

(10.4) 

(1 0.5) 

(10.6) 
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The curves corresponding to i, v R, and v L are illustrated in figures 10.2a, b and c, 
respectively. The equations contain exponential terms which, theoretically at any 
rate, reach steady conditions only after an infmite period of time. This implies that 
the settling period of the transient is infinite! However, we can apply practical 
limitations to this, and it is usually assumed that the transients have decayed to a 
sufficiently small value when the value of the voltage or current is within one per 
cent of their fmal values. In the case of the current, figure 10.2a, the transient 
period is assumed to be completed when i reaches a value of 0.99£/R; for the vR 

waveform it occurs when it reaches 0.99£; and for v L it occurs when it has fallen to 
0.01£. The three conditions occur simultaneously. 

Final value of i As stated above, i reaches its maximum value only after an 
infinite length of time, and its value is obtained by inserting t = oo into equation 
10.4 as follows 

(10.7) 

Initial rate of rise of cu"ent The initial rate of rise of current can be computed 
from equation 10.1 if we insert the value of the initial current, viz. (i)t = 0 = 0, into 
the equation as follows 

E 

L 
A/s 

If the initial rate of rise of current were maintained, it would reach the final value 
of current of E/R in r seconds, see figure 10.2a, where 

final value E/R L 
r = = - = - seconds 

initial rate of rise E/L R 

Parameter r is known as the time constant of the circuit. 

Circuit current when t = r Equation 10.4 may be written in the form 

E 
i=-(1-e-tfr) 

R 

(10.8) 

(10.9) 

In order to determine the value of the current r seconds after the switch is closed, 
let t = r in equation 10.9 

COt= r = ~ (1 - e -I)=~ (1 - 0.368) = 0.632£/R 
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that is, the current reaches 63.2 per cent of its final value in this period of time. 
Also, in the same length of time, v R has risen to 63.2 per cent of its fmal value, and 
vL has fallen by 63.2 per cent of its initial value to 0.368£. 

Fall of cu"ent in an inductive circuit 

Suppose that switch S in figure 10.3a is closed when t = 0, when the inductor is 
carrying current I. At this instant of time the e.m.f. applied to the LR circuit is 
reduced to zero, and v R + v L = 0, or 

hence 

or 

E 

I 

0 

di 
Ri+L -=0 

dt 

di 
Ri=-L­

dt 

R di 
-dt=-­
L i 

t=o;; 
s 

(a) 

. . . RI I 
1n1hal slope = - L amperes s 

(b) 

time 

Figure 10.3 Decay of current in an inductive circuit 

(10.10) 
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whence 

therefore 

Rt 
- =-lni+lnA 
L 

249 

(10.11) 

where A is the constant of integration. At the instant that the switch is closed 
(t = 0), the circuit current is I. Substituting the initial conditions into equation 
10.11 gives 

or 

therefore 

hence 

therefore 

0=-lni+lnA 

A =I 

Rt 
- = - ln i + ln I= ln (I/i) 
L 

eRtfL =I/i 

i=Ie-RtfL 

=Ie-t/T 

The general shape of this curve is shown in figure 1 0.3b. 

(10.12) 

(10.13) 

Final value of current The final value of current is attained after an infinite 
length of time, when 

(i)t== = Ie-= = 0 

That is, the steady value of circuit current is zero. 

Initial rate of fall of current Inserting the initial value of i (=f) into equation 
10.10 yields 

(10.14) 

If this rate of fall of current were to continue, the current would reach zero value in 
7 seconds. 
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Circuit cu"ent when t = T Substituting t = T into equation 10.13 yields 

(i)r = T = /e - 1 = 0.368 I 

that is, the current falls to 36.8 per cent of its initial value in T seconds. 

Example 10.1 

A voltage pulse of amplitude 5 V and duration 5 ms is applied to a relay coil of 
inductance 0.1 H and resistance 100 n. The relay contacts close when the coil 
current is 40 rnA and open when it is 15 rnA. Determine (a) the time delay before 
the contacts close and (b) the length of time the contacts remain closed. Assume 
that the current in the coil is initially zero and that the source resistance is zero. 

Solution 

The steady-state current in the coil after the switch-on transient has decayed is 

/= E/R = 5/100 = 0.05 A= 50 rnA 

The waveform of the current in the coil is shown in figure 10.4 in which 

t 1 = time delay before the contacts close 

t 2 = time delay for the contacts to open after the applied 
voltage has been reduced to zero 

t 3 = length of time the contacts remain closed = 5 ms - t 1 + t 2 

The circuit time constant is 

T = L/R = 0.1/100 = 0.001 s 

40 mA-----

"i5 
u 
Q) 

£ 
.!: 
c 
~ 
:::J 
0 

---15 mA 

Figure 10.4 

time 
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(a) Determination oft1 

The relay current after t 1 is 40 rnA hence, from equation 10.9 

or 

40 X 10-3 =50 X 10-3(1- e -t./0.001) 

Solving for t 1 yields 

t 1 =Tin 5 = 0.001 x 1.6094 = 1.6094 x 10-3 s = 1.6094 ms 

(b) Determination o[t2 

251 

Equation 10.13 describes the fall of the current in the circuit, irl which I= 50 rnA, 
i = 15 rnA and t = t2 , hence 

or 

15 X 10-3 =50 X 10-3 X e-t,/T 

t2 =TIn (50/15) = 10-3 x 1.2039 x 10-3 s 

= 1.2039 ms 

(c) Determination oft3 

From the expression given above 

t 3 = 5- t 1 + t 2 = 5- 1.6094 + 1.2039 ~ 4.6 ms 

10.2 Sketching Exponential Curves 

A method of sketching the general shape of the curves described by equations 10.4 
and 10.13 is by evaluating the co-ordinates of a number of points on the curves. 
The results in table 10.1 are calculated for the equation i = (E/R)(1 - e-t/T. 

Table 10.1 

Value of i 

0.5E/R 
0.75E/R 
0.875 E/R 
0.9375£/R 

Time taken to reach i 

0.7 T 

1.4 T 

2.1 T 

2.8 T 

Point on figure 10.5a 

A 
B 
c 
D 

The resulting curve is sketched in figure 1 0.5a, and it can be seen that in the first 
time interval of 0.7 T the current rises by a value which is one-half of the difference 
between the irlitial value at the commencement of the time interval and the fmal 
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Figure 10.5 Sketching exponential curves 

value (that is, E/R). In the second 0.7 r time interval the current rises by one·half 
of the difference between the value of the current at the beginning of the interval 
(0.5 E/R) and the final value, that is, by one-half of (1 - 0.5)£/R = 0.25 E/R 
(point Bon the curve). During the third 0.7 r time interval the current again rises 
by one-half of the difference between the value of the current at the commence­
ment of the period (0.75 E/R) and the final value, that is, by one-half of 
(1- 0.75)E/R = 0.125£/R, to point C on the curve. This relationship continues 
during the remainder of the curve. 

The curve for the decay of current, i = Ie- tfr, can be plotted from the figures in 
table 10.2. 
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Table 10.2 

Value ofi Time taken to reach i Point on figure 10.5b 

0.5/ 0.7 T A' 
0.25/ 1.4 T B' 
0.125/ 2.1 T c' 
0.06251 2.8 T D' 

From the table, we see that the value of the current halves for each 0.7 T time 
interval. 

Example 10.2 

An inductive circuit has a resistance of I 0 S1 and an inductance of 1 H. Sketch the 
curve showing the rise of current in the coil if it is connected to a 20 V d.c. supply 
of zero source resistance. After steady·state operating conditions the supply is 
disconnected and, simultaneously, the coil is short-circuited. Sketch the curve 
showing the decay of current in the circuit. 

Solution 

The steady-state circuit current is 

I= E/R = 20/10 = 2 A 

and the circuit time constant is 

r = L/R = 1/10 = 0.1 s = 100 ms 

From the preceding work, the current will have risen from zero to 1 A in 70 ms, to 
1.5 A in 140 ms, and to 1.75 A in 210 ms, and so on. The curve showing the rise of 
current is shown in figure 10.6. Also, after the coil has been disconnected from the 

2 A-----------------=.--~-=-----

175 A---
1 
I 
I 
I 
I 
I 
I 
I 
I 

70 ms 70 ms 70 ms 
time 

Figure 10.6 
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supply and a short-circuit applied to it, the current falls to 1 A in 70 ms, to 0.5 A 
after another 70 ms, etc. 

10.3 Rise-time, Fall-time and Settling-time of Exponential Curves 

The rjse-time, tro of an exponential curve is the time taken for the waveform to rise 
from 10 per cent to 90 per cent of the final value, and is illustrated in figure 10.7. 
Hence 

tr = t2 - t1 

At time t 1 the circuit current is 0.1/, hence from equation 10.9 

0.11=/(1- e-t~ f'r) 

or 

ti =TIn (1/0.9) ~ O.lT 

At time t 2 the circuit current is 0.9/, hence 

0.91 = /(1 - e-t,/T) 

or 

t2 =Tin 10~ 2.3 T 

Hence 

rise-time= tr = t 2 - t 1 = 2.2T 

In example 10.2 the value ofT was 0.1 s, and in that case tr = 0.22 s. 

(10.15) 

The settling-time, t8 , is the time taken for the transient current to die away, and 
is assumed to have occurred when the value of the current in waveform in figure 

time 

Figure 10.7 Determination of the rise-time and the settling-time of an exponen­
tial curve 
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10.7 has reached 99 per cent of its final value. Its value is equal to t 3 in the figure, 
and is calculated as follows 

or 

t8=t3 =rln 100~4.6r (10.16) 

In the case of a circuit with a time constant of 0.1 s, the settling-time is 0.46 s. 
The fall-time, tr, of an exponential curve is the time taken for it to fall in value 

from 90 per cent to 10 per cent of its initial value. This is shown as the time 
interval tr in figure 1 0.8, for the decay of current in an inductive circuit. The 
values of t 4 and t5 on figure 10.8 are calculated as follows. 

When t = t 4 , i = 0.9/, hence from equation 10.13 

0.9/=/e-t•/T 

or 

t 4 = T ln (1/0.9) ~ 0.1 T 

and at t 5 , i = 0.1/, when 

or 

hence 

I 

t 5 = r ln 10 ~ 2.3 r 

fall-time= tr = t 5 - t 4 = 2.2r 

i = Ie-t/r 

15 

~---------1,--------~~ 

time 

Figure 10.8 Determination of the fall-time of an exponential curve 

(10.17) 
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The settling-time, t5 , of figure 10.8 is the time taken for the current to fall to 
one per cent ofits initial value, that is, at time t6 when 

O.Oll=Ie-t6 fr 

or 

tr=t6 =rln 100~4.6r (10.18) 

10.4 Transients in RC Series Circuits 

Charging current 

If the capacitor in figure 10.9 is initially uncharged, then, when the switch is closed 
at t = 0, the initial rush of charging current is restricted only by the value of resistor 
R. As a result, the value of the initial charging current is E/R amperes. As the 
charge stored by the capacitor builds up, so the voltage vc between its terminals 
increases and the charging current decays in value. When the capacitor is fully 
charged the voltage between its terminals is equal to E and the magnitude of the 
current in the circuit is zero. The equation for the current in the transient period is 
derived below. 

From the work in chapter 4, the capacitor current is given by 

i = cdvc 
dt 

Applying Kirchhoffs first law to figure 10.9 gives 

or 

. dvc 
E = iR + vc = RC- + vc 

dt 

(E- vc)dt=RCdvc 

Figure 10.9 RC series circuit 



Transients in RL and RC Circuits 

hence 

dt dvc 
-=----"--"-
RC (E- vc) 

Integrating both sides of equation 10.19 gives 

t 
- = - ln (£- vc) + ln A 
RC 

257 

(10.19) 

(10.20) 

where A is the constant of integration, whose value is determined by inserting the 
initial conditions in the circuit into the equation. These conditions are that the 
capacitor is initially uncharged, that is v c = 0 when t = 0. Substituting the initial 
conditions into equation 10.20 gives 

hence 

or 

whence 

0=-lnE+lnA 

_t_ = -ln (£- vc) + ln£= ln(-£-) 
RC E- Vc 

E --=e-t/RC 
E- vc 

Vc =£(1- e-t/RC) 

= E(l _ e- tiT) 

where T = RC, and is the time constant of the circuit. 
The voltage across the resistance is 

VR =£- Vc=Ee-t/r 

and the current in the circuit is given by the expression 

i= VR=l!_e-t/T 
R R 

(10.21) 

(10.22) 

(10.23) 

(10.24) 

The curves corresponding to equations 10.21, 10.23 and 10.24 are shown in figures 
1 O.lOa, b and c, respectively. 

Initial values ofvc, VR, and i Substituting t = 0 into equation 10.21 yields the 

initial value ofvc. 
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Figure 10.10 Transients during the charging period of an RC circuit 
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and the initial value of v R is 

and the initial current is 

Final values ofvc, vR and i Substituting t = oo into equation 10.21 gives the final 
value of v c as 

The final value of v R is, therefore 

and the final value of i is 

Initial slopes of the transient curves From equation 10.19 

dvc E- vc 
----=---

dt RC 

Inserting the initial conditions, that is, vc = 0 at t = 0 into the above equation gives 

(dvc) 
dt t=O 

E E 
RC r 

V/s (10.25) 

Clearly, since the supply voltage has a constant value, the voltage v R across the 
resistor must decrease at the same rate as voltage vc increases. The initial rate of 
change ofvR is, therefore, given by the expression 

(dvR) 
dt t=O 

E 
V/s 

T 

Circuit voltages when t = r Substituting t = r into equation 10.22 yields 

(vc)t=r = E(l - e -t) = £(1 - 0.368) = 0.632 E 

and the value of v R is 

Rise-time of vc Since vc follows an exponential curve of the general type in 

figure 10.7, the rise-time of the curve is 

rise-time= tr = 2.2r = 2.2RC seconds (10.26) 
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Fall-time ofvR The graph ofvR follows the general pattern of the curve in figure 
10.8, hence the fall-time is 

fall-time = tr = 2.2T = 2.2RC seconds (10.27) 

Settling-time ofvc and VR Following the work in section 10.3, the settling-time 
for the curves in figure 10.10 is 

settling-time = t5 = 4.6T = 4.6RC seconds (10.28) 

Discharge cu"ent 

Let us assume that a capacitor has been charged to voltage E in the manner 
described above, and it is re-connected into the circuit in figure 10.11. When the 
switch is closed, the capacitor discharges its energy into the circuit and current 
flows out of the upper plate and into the lower plate. 

The convention adopted here is to assume that the positive direction of flow of 
current is that which causes the capacitor to be charged. Thus, in figure lO.lla, we 
show the circuit current flowing into the upper plate. In the analysis which follows 
it will be seen that the resulting value of i is negative (see equation 10.34 below), 
clearly indicating that the actual direction of flow of current is opposite to the one 
we have chosen. 

Since the e.m.f. acting around the loop to charge the capacitor is zero, then 

and, since i = C dvc/dt, then 

or 

iR +vc=O 

RC dvc/dt = -vc 

~=- dl'c 
RC vc 

Integrating both sides of the above equation yields 

t 
- = -ln vc +InA 
RC 

(10.29) 

(10.30) 

(10.31) 

The constant of integration, A, is determined by inserting the initial conditions into 
equation 10.31, that is, Vc = E when t = 0. 

0 =-In£+ InA 

or 

A=E 
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Figure 10.11 Transients in an RC circuit during the discharge period 

261 



262 Electrical Circuits and Systems 

therefore 

whence 

t 
- = -In vc + In E = In (E/vc) 
RC 

Vc =Ee-tfRC 

From equation 10.29 we see that 

VR = -vc = -Ee-tfRC 

also 

E 
i = VR/R =- -e-tfRC 

R 

{10.32) 

{10.33) 

(10.34) 

The curves corresponding to equations 10.32, 10.33 and 10.34 appear in figures 
10.11b, c and d, respectively. 

Initial values Inserting t = 0 in equations 10.32 to 10.34 gives 

(vc)t=o =E 

(vR)t=O = -E 

(i)t=o = -E/R 

Note The negative sign associated with the initial value of current implies that the 
current leaves the upper plate of the capacitor in figure 10.11. 

Initial slopes of the curves in figure 10. I1 From equation 10.30 

dvcfdt = -vcfRC 

Since the initial value of vc is E, then 

(dvc) __ E 
dt t=o RC 

V/s 

Also, since vR = -vc, then dvR/dvcfdt, then 

V/s 

Circuit voltages when t = T As before, the circuit time constant is RC seconds; 
substituting this value into equations 10.32 and 10.33 yields 

(vc )t=r = Ee-1 = 0.368 E 

(vR)t=r = -Ee-1 = -0.368 E 
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Final values of voltage and cu"ent Putting t = oo into equations 10.32 to 10.34 
gives 

(vc)t=oo = Ee-oo = 0 

(vR)t== = -Ee-oo = 0 

(i) - = ~ e-oo = 0 
t-oo R 

Fall-time and settling-time The fall-times of vc and of vR are both given by the 
expression 

tr = 2.2r 

and the settling-time of all the waveforms in figure 10.11 is 

t5 = 4.6T 

10.5 Sawtooth Waveform Generator or Timebase Generator 

The basis of many electronic sawtooth waveform generators is an RC series circuit 
energised by a unidirectional supply voltage, whose capacitor can be discharged 
very rapidly at regular intervals of time by means of an electronic switch. One such 
circuit is shown in figure 10.12a, in which a voltage-sensitive electronic switch, D, is 
connected across the capacitor. When the voltage across the capacitor reaches 
voltage V8 R at time t 1 in figure 10.12b, the switch closes-and short-circuits the 
capacitor, thereby discharging it. When the capacitor is fully discharged, the switch 
opens and the capacitor begins to charge once more. This cycle is repeated 
indefinitely. Electronic devices used as voltage-sensitive switches include diacs 
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Figure 10.12 A basic form of sawtooth generator 
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(bi-directional breakdown diodes), unijunction transistors and neon tubes. The 
circuit is known as a sawtooth generator because of the shape of the output voltage 
waveform. It is also known as a timebase generator since it can be used to provide 
an X-deflection waveform (the timebase waveform) of a cathode-ray oscilloscope. 

Ideally, timebase wavefdrms have a linear slope. The waveform in figure 10.12b 
follows an exponential curve and is not linear but, provided that VB R is very much 
less in value thanE then the waveform approximates to a straight line. 

If in figure 10.12a, E = 150 V, V8 R = 30 V, R = 100 kS1, and C = 0.01 pF then, 
from the equation for the voltage across the capacitor, equation 10.21 

v c = E(l - e ~ *) 

When t = t 1 in the above equation, then Vc = VBR· Since the circuit time constant 
is (100 x 103 x 0.01 x 10-6 = 10-3 s), then 

30= 150(1-e~t,/lO-') 

or 

whence 

t 1 = 10-3 ln (1/0.8) = 0.2231 x 10-3 s = 0.2231 ms 

From the above calculation, the periodic time of the waveform is 0.2231 ms. The 
deviation of the waveform from linearity during the 'sweep' time can be determined 
from our knowledge of the initial slope of the waveform which is, from equation 
10.25 

E ISO 
- =- = 150000V/s 
r w- 3 

Had the initial rate of rise of output voltage continued for a time equal to t 1 in 
figure 10.12b, the output voltage would have been 

150 000 X 0.2231 X 10-3 = 33.5 V 

That is, the waveform deviates from linearity during the sweep period by 3.5 V, or 
11.7 per cent. 

10.6 Differentiator Circuits 

In some applications it is necessary to differentiate electrical signals with respect to 
time. A popular application of electronic differentiators is to the production of 
pulses from a rectangular waveform. One circuit which may be used as an 
approximate differentiator is shown in figure 10.13a. Here the output voltage is 
developed across the resistor, and is proportional to the capacitor current. When the 
input voltage rises from zero to +E, the capacitor draws a charging current and 
causes the upper terminal to become positive for the period of time the capacitor 
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Figure 10.13 Approximate differentiator circuit 

charges. When the input voltage falls from +E to zero, it is equivalent to applying a 
short-circuit to the input terminals of the circuit, in the manner of figure 10.11a, 
thereby discharging the capacitor. 

It was shown earlier that the settling-time for pulses of the type in ftgure 
10.13b is 4.67 (see equation 10.28). For the output waveform in ftgure 10.13b to 
be regarded as the differential of the input waveform, the pulses must be of very 
short duration. That is 

4.6RC~ Tp 

where Tp is the pulse period of the rectangular wave. If we assume that Tp is about 
100 times greater than the product RC, then 

RC= Tp/100 

If Tp is 1 ms, then to differentiate the wave we need an RC circuit with a time 
constant of 0.01 ms or less; if C= 0.01 MF, the value of R should be 1 kD, and if 
C= 0.1 MF thenR = 0.1 k!t 

Summary of Essential Formulae 

RL sen·es circuit: time constant= 7 = L/R seconds 
E 

Rise of current: i =- (1- e-tfr) 
R 

vR = £(1 - e- tfr) 
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VL =Ee-tfT 

fmal value of current= E/R ampere 

initial rate of rise of current= E/L A/s 

Current when t = r: i = 0.632E/R ampere 

Fall of cu"ent: i = /e- t/T 

VR =/Re-tfT 

final value of current = 0 

initial rate of fall of current= -1/r A/s 

current when t = r; i = 0.368/ ampere 

RC series circuit: time constant = T = RC seconds 

Charging cu"ent: 
E i=-e-tfT 
R 

VR =Ee-tfT 

!lc = E(l - e- tfT) 

fmal value of current = 0 

initial rate of change ofvc = E/r V/s 

capacitor voltage when t = r: vc = 0.632£ 

Discharge cu"ent: 
E 

i=--e-tfT 
R 

VR = -Ee-tfT 

Vc=Ee-t/T 

final value of current = 0 

initial rate of change ofVc = -E/r V/s 

capacitor voltage when t = r: vc = 0.368£ 

Exponential curves: 

rise-time = tr = 2.2 T 

fall-time = tr = 2.2 T 

settling-time = t8 = 4.6 T 
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